

Contents lists available at ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

New tracer diffusion correlation for real systems over wide ranges of temperature and density

Ana L. Magalhães, Francisco A. Da Silva, Carlos M. Silva*

Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

ARTICLE INFO

Article history: Received 24 May 2010 Received in revised form 28 September 2010 Accepted 28 September 2010

Keywords: Tracer diffusion coefficient Hard sphere Lennard–Jones Real fluids Model

ABSTRACT

In this work a new model for tracer diffusivities (D_{12}) of real systems is proposed. It is applicable for gases, liquids and supercritical fluids over wide ranges of temperature and density. It was derived on the basis of a very accurate hard sphere expression, following a systematic derivation whereby the softness of repulsive interactions and the contribution of attractive forces were taken into account by means of effective diameters and by coupling an attractive exponential term. The model is explicit and requires only temperature, density, and one diffusive parameter. The validation was accomplished with the largest database ever compiled – 314 binary systems and 5421 data points – giving rise to an average deviation of only 4.40%. Finally it must be emphasized the reliable estimation capability of the new model, i.e. its capacity to predict D_{12} at temperatures and densities far away from the conditions of the experimental data utilized to fit its parameter.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion is a microscopic level phenomenon that results from particles motion and interaction. The proportionality constant between particles flux and concentration gradient defines the diffusion coefficient [1,2], which may be experimentally measured or estimated by computer simulations or macroscopic models. Typically, tracer diffusion coefficients (D_{12}) are measured by the chromatographic-peak-broadening technique, based on the Taylor–Aris dispersion phenomenon, or by the geometric method [3,4]. With relation to computer simulations, diffusion coefficients, as well as other transport coefficients, may be calculated from equilibrium correlation functions, by observing Green–Kubo formulas or the associated Einstein relations, or going back to first principles and conducting suitable non-equilibrium simulations [2,5].

The tracer diffusion coefficients are fundamental properties in research and industry. The lack of experimental data and reliable/accurate equations to estimate them in compressed and condensed phases constitute basic shortcomings. For most concentrated liquid mixtures, binary and effective diffusivities can be estimated on the basis of the tracer coefficients of the implied components using the Darken [6], the Vignes [7], or any other of the equations reviewed by Pertler et al. [8].

Up till now it is not yet possible to give a rigorous theoretical interpretation of the transport properties of dense fluids, because of the many-body interactions involved and the pair potential energy functions are only known for simple molecules. However, the repulsive interaction in condensed phases plays a major role in their properties, which means that an accurate model for hard spheres (HS) can be used as a first approximation for the major excluded volume and packing effects of real substances. In fact, it has been found that for the liquid viscosity and diffusivity the contribution of the hard sphere term is up to about 70% [2], which evidences its predominance over the attractive contribution. Nonetheless, for proper application of the Hard Sphere (HS) theory, it is necessary to take into account corrections for correlated motions dominant at intermediate and high densities, which may be assessed by computer simulations, specifically by equilibrium and/or nonequilibrium molecular dynamics [1,2,9].

The main theories for transport properties of dense fluids are the milestone Enskog theory of the HS fluid, the modified Enskog theory applicable to real fluids, the effective hard sphere diameter method, the free-volume approaches (e.g., Dymond, Cohen–Turnbull, Macedo–Litovitz, Chung), the van der Waals and rough hard sphere theories, the hydrodynamic theories based on the Stokes–Einstein equation, the Eyring activated-state theory, and the excess entropy scaling laws which are receiving much attention recently [1,2,10–21].

In this work it is presented a new tracer diffusion coefficients model for real systems derived on the basis of the HS model fluid. The softness of repulsive interactions is taken into account by means of the effective hard sphere diameter method, and the

^{*} Corresponding author. Tel.: +351 234 401549; fax: +351 234 370084. *E-mail address:* carlos.manuel@ua.pt (C.M. Silva).

^{1385-8947/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cej.2010.09.069

Nomenclature

ΔΔΡΓ	Average absolute relative deviation AAPD _
TUIRD	NDP
	$\binom{100}{100}$ × $\sum (D_{12}^{\text{calc}} - D_{12}^{\text{exp}})/D_{12}^{\text{exp}} $
	$(NDP) \rightarrow \sum_{i=1}^{n} (-12, \text{Real}) = 12, \text{Real} / (-12, \text{Real}) _i$
В	Parameter in Eq. (27)
D	Diffusion coefficient. cm^2/s
F	Correction factor of HS system
$g(\sigma)$	Radial distribution function at contact
HS	Hard sphere fluid
k _R	Boltzmann constant. 1.380658 \times 10 ⁻¹⁶ erg/K
m	Mass of a molecule, g
М	Molecular weight
MD	Molecular Dynamics
NDP	Number of data points
NS	Number of systems
Na	Avogadro constant, $6.0221367 \times 10^{23} \text{ mol}^{-1}$
Ρ	Pressure, bar
R_{g}	Gas constant, 8.31541×10^7 erg/mol K
Т	Temperature, K
V	Molar volume, cm ³ /mol
$V_{\rm D}$	Parameter in Eq. (27)
Greek le	tters
η	Viscosity, cP
φ_1	HS packing fraction of solvent
ρ	Number density, N _a /V, cm ⁻³
$\varepsilon/k_{\rm B}$	Lennard–Jones energy parameter, K
σ	Molecular diameter, cm
Culturation	
bp	Roiling point
бр	Critical property
off	Effective bard sphere diameter (EHSD)
F	Enective hard sphere diameter (LHSD)
ц	Hard sphere fluid
II5 II	Lennard_Iones fluid
LJ R	Reduced property
Real	Refers to real systems
1 11	Solvent
1, 11 2	Solute
12	Binary property
14	bining property
Supersci	ripts
0	Ideal gas
*	Reduced quantity
	• •

contribution of attractive forces is considered by combining an Arrhenius exponential term. Such approaches are well grounded in theory [2,12,22,23].

The paper is organized as follows: the new tracer diffusion model is derived in Section 2; the equations adopted for comparison are presented in Section 3; the compiled D_{12} database and all data necessary for the calculations are given in Section 4; the calculated results and discussion constitute Section 5; in the final section, most important conclusions are drawn.

2. New tracer diffusivity model for real systems, D_{12,Real}

The theoretical path adopted in this essay to develop the new tracer diffusion coefficients model for real systems may be summarized as follows: (i) first, an accurate expression for the tracer diffusivity of the HS fluid ($D_{12,HS}$) will be adopted; (ii) then, the effective hard sphere diameter (EHSD) method will be used to take into account essentially the softness of the repulsive potential; (iii) the effect of the attractive forces, which play an important role especially at low temperatures, will be included by coupling an exponential energetic term with one parameter, α_{12} . The equation so obtained involves three parameters: α_{12} and the LJ force constants σ_{LJ} and ε_{LJ}/k_B ; (iv) The final model will be than applied to real substances by computing σ_{LJ} and ε_{LJ}/k_B with generalized correlations, and fitting the remaining parameter to experimental data available in the literature. In the following, the new $D_{12,Real}$ model will be derived according to these steps.

The diffusion coefficient of an infinitely diluted gas, D_{12}^0 , may be calculated by the rigorous kinetic theory of gases:

$$\rho_1^0 D_{12}^0 = \frac{3}{8\,\sigma_{12}^2} \left(\frac{k_{\rm B}T}{2\pi m_{12}}\right)^{1/2} \tag{1}$$

where scripts "0", "1" and "2" denote ideal gas, solvent and solute, respectively, ρ_1 is number density, $k_{\rm B}$ is Boltzmann constant, *T* is absolute temperature, m_{12} is the reduced mass of the system, and σ_{12} is the distance between the centers of the molecules at collision. The values of m_{12} and σ_{12} are calculated in terms of the individual molecular masses and diameters by:

$$\sigma_{12,LJ} = \frac{\sigma_{1,LJ} + \sigma_{2,LJ}}{2} \tag{2}$$

$$m_{12} = \frac{m_1 m_2}{m_1 + m_2} = \frac{1}{N_a} \frac{M_1 M_2}{M_1 + M_2} \tag{3}$$

Eq. (1) is not applicable to dense gases and liquids since it is based upon the Boltzmann equation for the distribution function. Enskog [1,2,24] corrected the ideal gas behaviour by taking into account excluded molecular volume effects, which are increasingly important as density raises, and by modifying the collision frequency in the fluid by the unlike pair radial distribution function at contact, $g(\sigma_{12})$. Accordingly, the Enskog equation for the tracer diffusion coefficient is:

$$\frac{\rho_1 D_{12,E}}{\rho_1^0 D_{12}^0} = \frac{1}{g(\sigma_{12})} \tag{4}$$

In this paper $g(\sigma_{12})$ is calculated by the expression of Mansoori et al. [25], due to its simplicity and accuracy. It depends on the solvent HS packing fraction of the solvent, φ_1 , and solute solvent diameter ratio:

$$g(\sigma_{12}) = \frac{1}{(1-\varphi_1)^3} \left(1-\varphi_1 + \frac{2\varphi_1}{1+\sigma_1/\sigma_2}\right) \left(1-\varphi_1 + \frac{\varphi_1}{1+\sigma_1/\sigma_2}\right)$$
(5)

For N_1 spheres occupying a volume V, φ_1 is given by:

$$\varphi_1 = \frac{N_1 \pi \sigma_1^3}{6V} = \frac{\pi}{6} \rho_1 \sigma_1^3 = \frac{\pi}{6} \rho_1^* , \quad \rho_1^* \equiv \rho_1 \sigma_1^3$$
(6)

where ρ_1^* is the reduced number density of solvent.

The Enskog theory is not applicable over large density range since it does not take into account the correlated motions between core collisions responsible for backscattering and vortex flow effects. Hence, the HS tracer diffusivity is usually obtained by correcting Enskog theory with a correction factor (F_{12}) dependent upon the reduced density of the solvent, and on the size and mass ratios:

$$D_{12,\text{HS}} = D_{12,\text{E}} \times \left(\frac{D_{12,\text{HS}}}{D_{12,\text{E}}}\right) = D_{12,\text{E}} \times F_{12}\left(\rho_1^*, \frac{\sigma_2}{\sigma_1}, \frac{m_2}{m_1}\right)$$
(7)

The F_{12} correlation of Magalhães et al. [26] has been adopted in this essay, since it is simple, explicit and very accurate, in comparison to several well known models from literature as those by

Sung and Stell [27], Sun and Chen [28], Easteal and Woolf [29], and Eaton and Akgerman [30]. It is applicable in the range 0.4714 $\leq \rho_1^* \leq 0.9428$, 0.25 $\leq \sigma_2/\sigma_1 \leq 1.00$, 0.01 $\leq m_2/m_1 \leq 4.00$:

$$F_{12} = \frac{F_{11} + \rho_1^{*1.7} \left[a \ln(\sigma_2/\sigma_1) + b \ln^2(\sigma_2/\sigma_1) + c \ln(m_2/m_1) \right]}{1 + \rho_1^{*3.0} \left[d \ln(\sigma_2/\sigma_1) \right]^2}$$
(8)

where coefficients *a*, *b*, *c* and *d* are linear functions of the reduced number density of solvent:

$$\begin{cases} a = -1.676382\rho_1^* + 1.638561 \\ b = -8.516830\rho_1^* + 8.631536 \\ c = -1.320347\rho_1^* + 1.351067 \\ d = -5.062546\rho_1^* + 5.409662 \end{cases}$$
(9)

and *F*₁₁ is calculated according to Ruckenstein and Liu [31]:

$$F_{11} = 1 + 0.94605\rho_1^{*1.5} + 1.4022\rho_1^{*3} - 5.6898\rho_1^{*5} + 2.6626\rho_1^{*7}$$
(10)

The softness of the repulsive interactions should be now introduced. This may be accomplished by perturbation approaches, which usually combine HS models as an appealing and tractable first approximation, for the major excluded-volume and packing effects, with an effective diameter dependent on temperature and possibly on density, to account for the softness of the repulsive potential. Following Liu et al. [23,32] and the extensive comparison carried out by Silva et al. [12], the selected expression is only T-dependent:

$$\sigma_{i,\,\text{eff}}(T_i^*) = \sigma_{i,\,\text{LJ}} \times 2^{1/6} [1 + (1.3229 \, T_i^*)^{1/2}]^{-1/6}, \quad i = 1, \, 2, \, 12$$
(11)

Note that *i*=1 or 2 for pure solvent and solute, and 12 for the binary system. According to Eq. (5), the calculation of $g(\sigma_{12,eff})$ needs $\varphi_{1,eff} = \pi/6\rho_1\sigma_{1,eff}^3$, and effective diameters $\sigma_{1,eff}$ and $\sigma_{2,eff}$; additionally, F_{12} (Eq. (8)) also needs $\sigma_{1,eff}$ and $\sigma_{2,eff}$; on the contrary, Eq. (1) uses $\sigma_{12,eff}$. The implied reduced temperatures are:

$$T_i^* \equiv \frac{k_{\rm B}T}{\varepsilon_{i,\rm LJ}}, \quad i = 1, 2, 12$$
 (12)

where the binary LJ diameter and energy are evaluated by the classical Lorentz-Berthelot combining rules given by Eqs. (2) and (13), respectively.

$$\frac{\varepsilon_{12,LJ}}{k_{\rm B}} = \sqrt{\left(\frac{\varepsilon_{1,LJ}}{k_{\rm B}}\right) \times \left(\frac{\varepsilon_{2,LJ}}{k_{\rm B}}\right)} \tag{13}$$

The LJ force constants may be taken from Table 7 of Liu et al. [32] or, for substances not covered in that essay, calculated by the following corresponding states correlations of Silva et al. [22] (critical constants in K and bar):

$$\sigma_{\rm LJ}^{3}({\rm \AA}^{3}) = 0.17791 + 11.779 \left(\frac{T_{\rm c}}{P_{\rm c}}\right) - 0.049029 \left(\frac{T_{\rm c}}{P_{\rm c}}\right)^{2}$$
(14)

$$\frac{\varepsilon_{\rm LJ}}{k_{\rm B}} = 0.774 \, T_{\rm c} \tag{15}$$

Eq. (14) may be adopted successfully for $T_c/P_c < 100$. For higher values, one may estimate LJ diameter by a relation provided by principles of corresponding states [13,33,34], $\sigma_{LJ}(\text{\AA}) = 0.809V_c^{1/3}$, where V_c is critical volume in cm³/mol.

Let us now analyse the attractive forces. According to Kushick and Berne [35] and Straub [36], such forces play an important role in

Fig. 1. Calculation procedure of new model.

the transport process, especially at low temperatures. Several functions have been proposed in literature to take them into account in order to derive models for the LJ fluid (e.g. Straub [36], Speedy et al. [37]). In this work an exponential factor has been selected to embody such attractive contribution:

$$D_{12,LJ} = D_{12,E} \times F_{12} \times \exp\left(-\frac{\alpha_{12}}{T_{12}^*}\right)$$
(16)

The desired correlation for the tracer diffusion coefficient of real systems, $D_{12,\text{Real}}$, can be now obtained by writing Eq. (16) explicitly as function of *T* and ρ_1 . After carrying out all previous substitutions the final $D_{12,\text{Real}}$ model arises:

$$D_{12,\text{Real}} = \frac{3}{8\rho_1 \sigma_{12,\text{eff}}^2} \left(\frac{k_\text{B}T}{2\pi m_{12}}\right)^{1/2} \times \frac{F_{12}}{g(\sigma_{12,\text{eff}})} \times \exp\left(-\frac{E_\text{D}}{R_\text{g}T}\right)$$
(17)

where $R_g = 8.31541 \times 10^7$ erg/mol K is the universal gas constant, and $E_D \equiv (\varepsilon_{12,LJ}/k_B)\alpha_{12}/R_g$ is the unique parameter involved, which only depends on the binary system and can be fitted to experimental data. So, our model may be presented in condensed notation like $D_{12,Real} = D_{12,Real}(T, \rho_1; E_D)$. For clarity, in Fig. 1 the entire calculation procedure is schematically represented.

3. Models adopted for comparison

In this paper five tracer diffusivity models were adopted for comparison. They are the hydrodynamic expressions of Wilke-Chang (WC), Lusis-Ratcliff (LR), and Lai-Tan (LT) with zero parameters [3,13]; the predictive equation of Zhu et al. (Zhu) [38]; and the 2-parameter correlation of Dymond (DHB) [1,2,39]. In the following, their expressions are summarily presented.

Wilke-Chang equation [3,13,40]

$$D_{12}(\text{cm}^2/\text{s}) = 7.4 \times 10^{-8} \frac{T\sqrt{\phi M_1}}{\eta_1 V_{\text{bp},2}^{0.6}}$$
(18)

where ϕ is a dimensionless association factor of the solvent (for CO₂, $\phi = 1$), η_1 is the solvent viscosity (cP); M_1 is solvent molecular weight (g/mol); $V_{\text{bp},2}$ is solute molar volume at its normal boiling point (cm³/mol).

Lusis-Ratcliff equation [3,41]

$$D_{12}(\text{cm}^2/\text{s}) = \frac{8.52 \times 10^{-8} T}{\eta_1 V_{\text{bp},1}^{1/3}} \left[1.40 \left(\frac{V_{\text{bp},1}}{V_{\text{bp},2}} \right)^{1/3} + \left(\frac{V_{\text{bp},1}}{V_{\text{bp},2}} \right) \right]$$
(19)

Lai-Tan equation [42]

$$D_{12}\left(\mathrm{cm}^{2}/\mathrm{s}\right) = 2.50 \times 10^{-7} \frac{T\sqrt{M_{1}}}{(10 \times \eta_{1})^{0.688} V_{\mathrm{c},2}^{1/3}}$$
(20)

Model of Zhu et al. [38]

$$D_{12} = \frac{3}{8\sqrt{\pi}} \sqrt{\frac{\sigma_{12,\text{LJ}}^{2} \varepsilon_{12,\text{LJ}}}{m_{1}}} \frac{\sqrt{T_{12}^{*}}}{\rho_{12}^{**}} \left(1 - \frac{\rho_{12}^{*}}{1.029079T_{12}^{*0.165377}}\right) \\ \times \left[1 + \rho_{12}^{*0.126978} \left(\frac{0.596103 \left(\rho_{12}^{*} - 1\right)}{0.539292 \left(\rho_{12}^{*} - 1\right) + T_{12}^{*\left(0.400152 - 0.41054\rho_{12}^{*}\right)}} + 0.68856\right)\right] \\ \times \exp\left(-\frac{\rho_{12}^{*}}{2T_{12}^{*}}\right)$$

Here, T_{12}^* is calculated as before, but distinct reduced density is introduced, as $\sigma_{12,L1}$ is implied instead of $\sigma_{2,L1}$:

$$T_{12}^* = \frac{T}{\varepsilon_{12,LJ}/k_B}, \quad \rho_{12}^* = \rho_1 \sigma_{12,LJ}^3$$
(22)

The combining rules adopted to determine binary parameters are:

$$\varepsilon_{12,\text{LJ}}/k_{\text{B}} = \sqrt{\left(\varepsilon_{1,\text{LJ}}/k_{\text{B}}\right) \times \left(\varepsilon_{2,\text{LJ}}/k_{\text{B}}\right)} \\ \sigma_{12,\text{LJ}} = \left(1 - k_{12}^{\text{d}}\right) \frac{\sigma_{1,\text{LJ}} + \sigma_{2,\text{LJ}}}{2}; \quad \text{where } k_{12}^{\text{d}} = 0.7926 \frac{\sigma_{2,\text{LJ}} - \sigma_{1,\text{LJ}}}{\sigma_{1,\text{LJ}} + \sigma_{2,\text{LJ}}}$$
(23)

The LJ parameters for the solvent and solute are estimated by distinct expressions:

$$\varepsilon_{1,\text{LJ}}/k_{\text{B}}(\text{K}) = \frac{I_{\text{c},1}}{T_{\text{c},1}^{*}} \left[1 + 0.47527332 \,\rho_{\text{r},1} + \left(0.06300484 + 0.12374707\rho_{\text{r},1} \right) \, T_{\text{r},1} \right]$$
(24)

$$\sigma_{1,LJ}(cm) = \left(\frac{\rho_{c,1}^*}{\rho_{c,1}}\right)^{1/3} \left[1 - 0.0368868 \,\rho_{r,1} + \left(0.00006945 + 0.01089228 \,\rho_{r,1}\right) \,T_{r,1}\right]$$
(25)

$$\frac{\varepsilon_{2,LJ}}{k_{\rm B}} = \frac{T_{\rm c,2}}{1.313} \text{ and } \sigma_{2,LJ} = \sqrt[3]{\frac{0.13\,\varepsilon_{2,LJ}}{P_{\rm c,2}}}$$
 (26)

Such equations are based on the principle of corresponding states, and on the critical point computed by Johnson et al. [43] for the LJ fluid ($P_c^* = 0.13$, $T_c^* = 1.313$, $\rho_c^* = 0.31$).

Dymond Free-Volume expression [1,2,39]

This model embodies two adjustable parameters: B is a constant characteristic of the solvent–solute pair and V_D is a constant related primarily with the solvent.

$$D_{12} = B\sqrt{T}(V_1 - V_D)$$
(27)

4. Model validation: database and data for the calculations.

In this work the largest database of tracer diffusivities published up till now has been compiled with the purpose to validate the new D_{12.Real} model. It comprehends 314 systems performing 5421 points, covering gas (37 systems/422 points), liquid (104 systems/675 points) and supercritical (173 systems/4324 points) mixtures. Table 1 contains the systems studied, number of data points (NDP), number of systems (NS), reduced ranges of temperature, pressure, and solvent density for each system (reduction performed with critical constants), and data sources. As much as possible, all published data were used. However, systems with data available only in graphical form have been rejected. In Table 2 the name, molecular formula, CAS number, molecular weight, critical constants (T_c , P_c and V_c), normal boiling point (T_{bp}), molar volume at normal boiling point (V_{bp}) , and LJ force constants (for the new system) are listed for all molecules involved in calculations (205 totally). All data sources are identified.

0.68856)] (21)

Some authors do not report the solvent densities of their data. In these cases they have been calculated by the correlations of Pitzer and Schreiber [44] for CO₂, and Hankinson-Brobst-Thomson [13,45] for other fluids. Concerning the non-reported viscosities, which are necessary for the hydrodynamic equations adopted for comparison in this work, they have been estimated by the correlations of Mehrotra [46] for liquid hydrocarbons, and Altunin and Sakhabetdinov [47] for carbon dioxide. The unknown molar volumes at normal boiling point were estimated by Tyn Calus equation [13,48]. The unknown critical constants were estimated by Joback [13,49,50], Somayajulu [51], Klincewicz [13,52], Ambrose [13,53,54], Wen-Qiang [55], and Constantinou-Gani [56] methods.

5. Results and discussion

Table 3 shows the detailed results obtained with our model – Eq. (17)/Fig. 1 – and the equations adopted for comparison: the hydrodynamic expressions of Wilke-Chang (WC) [3,13,40], Lusis-Ratcliff (LR) [3,41], and Lai-Tan (LT) [42] with zero parameters; the predictive equation of Zhu et al. (Zhu) [38]; and Dymond's correlation (DHB) [1,2,39] (2 parameters). Global results are compiled in Table 4.

Concerning the calculation procedure, the new model is explicit and straightforward. One only needs the temperature, solvent density and the diffusive energy specific for each binary system, i.e. $D_{12,Real} = D_{12,Real} (T, \rho_1; E_D)$. In this work one presents NS = 314 values of E_D in Table 3. In terms of future applications, whenever E_D is unknown, it may be firstly optimized using some data points from literature. It is worth noting this optimization is very simple to carry out, since Eq. (17) may be linearized.

A.L. Magalhães et al. / Chemical Engineering Journal 166 (2011) 49-72

Table 1

Systems studied and data sources (note: an hyphen means that data is not available.).

System		$T_{\rm r,1}$	$P_{r,1}$	$ ho_{ m r,1}$	NDP	Data sources
Solvent (1)	Solute (2)					
		Supercritical sv	stems			
2.3-dimethylbutane	benzene	1 046–1 096	1 710-5 080	1 4320-1 9083	11	[57]
2,5 annethyibatane	naphthalene	1.046-1.096	1.710-5.080	1.4320-1.9083	9	[57]
	phenanthrene	1.046-1.096	1.710-5.080	1.4320-1.9083	11	[57]
	toluene	1.046-1.096	2.005-5.080	1.4320-1.9083	10	[57]
carbon dioxide	1,1,1,5,5,5-hexafluoroacetylacetone	1.013-1.046	1.411-3.008	1.2102-1.8699	15	[58]
	1,1'-dimethylferrocene	1.013-1.063	1.114-5.436	0.8278-2.0767	68	[59]
	1,2-dichlorobenzene	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[60]
	1,2-diethylbenzene	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[61]
	1,3,5-trimethylbenzene	0.997-1.096	1.287-4.743	1.2482-1.9104	24	[62-64]
	1,3-divinylbenzene	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[65]
	1,4-diethyddenzene	1.030-1.090	2.033-4.743	1.2953-1.9973	15	[01]
	1_nanhthol	1.013-1.030	1.188-4.070	1 1308_1 7453	29 11	[67]
	1-phenyldodecane	1 029-1 095	2.033-4.743	1 2953-1 9973	15	[68]
	1-phenylethanol	1.030-1.096	2.033-4.743	1.2955-1.9979	15	[69]
	1-phenylhexane	1.029-1.095	2.033-4.743	1.2953-1.9973	15	[68]
	1-phenyloctane	1.029-1.095	2.033-4.743	1.2953-1.9973	15	[68]
	1-propanol	1.030	1.287-2.168	1.2360-1.6971	17	[70]
	2,2,4,4-tetramethyl-3-pentanone	1.031	1.355-2.168	1.3304-1.6937	9	[71]
	2,3-dimethylaniline	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[72]
	2,3-dimethylnaphthalene	1.013	1.341-2.629	1.5133-1.8374	3	[73]
	2,4-dimethyl-3-pentanone	1.033	1.355-2.439	1.2971-1.7377	8	[71]
	2,4-dimethylphenol	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[/4]
	2,6-dimethylannine	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[72]
	2,0-dimethylnaphthalene	1.013	1.255-2.042	1.4272-1.8332	6	[73,75]
	2-bromoanisole	1.030-1.096	2.033-4.743	1 2953-1 9973	15	[65]
	2-butanone	1.013-1.079	1.129-4.679	1.2427-2.0287	38	[76]
	2-ethyltoluene	1.029-1.095	2.033-4.743	1.2959-1.9104	15	[77]
	2-fluoroanisole	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[65]
	2-heptanone	1.034	1.423-2.439	1.3637-1.7339	11	[71]
	2-methylanisole	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[72]
	2-naphthol	1.013-1.079	1.341-2.060	0.7020-1.7176	16	[67]
	2-nitroanisole	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[60]
	2-nonanone	1.034	1.355-2.033	1.2820-1.6464	10	[71]
	2-pentanone	1.013-1.034	1.203-3.963	1.1841-1.9341	23	[76]
	2-phenyl-1-propanor	1.030-1.096	2.033-4.743	1.2955-1.9979	15	[69]
	2-phenylethyl acetate	1.030-1.096	2.033-4.743	1 2953-1 9973	15	[09]
	2-propanol	1.030	1 287-2 304	1 2360-1 7247	18	[70]
	3-ethyltoluene	1.029-1.095	2.033-4.743	1.2959-1.9104	15	[77]
	3-nitrotoluene	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[72]
	3-pentanone	1.013-1.079	1.172-4.684	1.2610-2.0286	39	[76]
	3-phenyl-1-propanol	1.030-1.096	2.033-4.743	1.2955-1.9979	15	[69]
	3-phenylpropyl acetate	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[78]
	4-ethyltoluene	1.029-1.095	2.033-4.743	1.2959-1.9104	15	[77]
	4-heptanone	1.031	1.355-2.168	1.3304-1.6937	9	[71]
	4-metnylanisole	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[72]
	5-nonanone 5- <i>tert</i> -butyl-m-yylene	1.034	2 032-4 743	1.2020-1.7559	31	[71]
	6-undecanone	1.013-1.503	1 355-2 439	1 2820-1 7339	13	[71]
	acetone	0.997-1.096	1.076-5.435	0.7722-2.0762	178	[62.76.79.80]
	acridine	1.013-1.079	2.337-3.734	1.5149-1.9564	6	[81]
	adamantanone	1.031	1.355-2.033	1.3304-1.6621	8	[71]
	α-linolenic acid	1.013-1.128	1.152-4.084	1.1629-1.9845	56	[82]
	allylbenzene	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[65]
	aniline	1.030-1.096	2.033-4.743	1.2959-1.9104	15	[64]
	anisole	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[74]
	anthracene	1.209-1.095	4.065-47.425	0.7681-1.9949	22	[67]
	α -pinene	1.030-1.096	1.626-2./10	0.9530-1.7986	15	[83]
	AA othyl ostor	1.013-1.128	1.287-4.131	1.1880-1.9890	/5	[84]
	a-tocopherol	1.013-1.112	1.141-4.008 1.153_/ 107	1 3113-1 0271	40 82	[03] [82.86.97]
	B-carotene	1.013-1.090	1 236_4 111	1 3346-1 9875	90	[82 86 87]
	behenic acid ethyl ester	1.013-1.046	1.310-2.852	1.2802-1.8136	17	[88]
	benzene	0.997-1.096	1.084-4.743	0.5974-1.9973	222	[63.89-94]
	benzoic acid	0.964-1.048	0.962-4.065	1.1462-1.9424	29	[70,95,96]
	benzyl acetate	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[78]
	benzylacetone	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[97]
	biphenyl	0.964-1.063	0.962-2.317	1.1479-1.9458	24	[96]
	β-pinene	1.030-1.096	1.626-2.710	0.9530-1.7986	15	[83]
	bromobenzene	1.029-1.095	2.033-4.743	1.2959-1.9104	15	[98]
	butyric acid ethyl ester	1.013-1.046	1.310-2.852	1.2802-1.8136	16	[99,100]

Table 1 (Continued)

System		<i>T</i> _{r,1}	P _{r,1}	$ ho_{\mathrm{r},1}$	NDP	Data sources
Solvent (1)	Solute (2)					
(-)	coffeine	1.012 1.070	1.099 1.042	0.0110 1.7107	21	[42]
	capric acid ethyl ester	1.013-1.079	1 310-2 852	1 2802-1 8136	16	[42]
	caprylic acid ethyl ester	1.013-1.046	1.310-2.852	1.2802-1.8136	16	[99,100]
	chlorobenzene	1.029-1.095	2.033-4.743	1.2959-1.9104	15	[98]
	chrysene	0.997-1.096	2.168-3.591	1.7069-1.8776	4	[62]
	citral	1.030-1.096	1.626-2.710	0.9530-1.7986	15	[101]
	copper(III) acetylacetonate	1.030-1.096	1.314-5.420	1.2883-2.0413	38	[102]
	cvcloheptanone	1 033	1 355-2 439	1 2971-1 7377	8	[103]
	cyclononanone	1.033	1.355-2.439	1.2971-1.7377	8	[103]
	cyclopentanone	1.033	1.355-2.439	1.2971-1.7377	8	[103]
	dibenzo-24-crown-8	1.013-1.030	2.034-4.743	1.6664-2.0237	28	[66]
	dibenzyl ether	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[78]
	dietnyl ether	1.030-1.096	1.098-2.197	0.4182-1.7041	15	[104]
	diolein	1.030	1.355-3.389	1.3414-1.8777	9	[105]
	D-limonene	1.030-1.096	1.626-2.710	0.9530-1.7986	15	[101]
	docosahexaenoic acid (DHA)	1.013-1.128	1.256-4.083	1.2190-1.9849	63	[106]
	DHA ethyl ester	1.013-1.112	1.141-4.058	1.0685-1.8157	65	[85,88]
	DHA methyl ester	1.013-1.046	1.310-2.852	1.2802-1.8136	17	[88]
	EDA ethyl ester	1.013-1.128	1.176-4.085	1.1571-1.9514	33 48	[85]
	EPA methyl ester	1.013-1.046	1.310-2.852	1.2802-1.8136	17	[88]
	ethanol	1.030	1.287-3.388	1.2360-1.8776	24	[70]
	ethyl acetate	1.013-1.079	1.024-1.938	0.4545-1.7197	15	[42]
	ethyl benzoate	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[97]
	ethylbenzene	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[90]
	eugenoi	1.030-1.096	2.033-4.743	1.2953-1.9973	15	[97]
	fluorobenzene	1.015-1.005	2,033-4,743	1 2959-1 9104	50 15	[98]
	γ-linolenic acid	1.013-1.128	1.176-4.133	0.9758-1.9482	142	[107]
	$\dot{\gamma}$ -linolenic acid ethyl ester	1.030-1.128	1.138-2.169	0.7165-1.6974	41	[107]
	γ-linolenic acid					
	methyl ester	1.030-1.128	1.099-4.553	0.6222-1.9821	52	[107,108]
	hexachlorobenzene	1.013-1.079	1.310-3.352	0.8698-1.9223	14	[109]
	i-propylbenzene	1.029-1.095	2.033-4.743	1.2959-1.9104	15	[90]
	L-carvone	1.013-1.112	2.033-4.065	1.3894-1.9838	23	[110]
	Linalool	1.030-1.096	1.626-2.710	0.9530-1.7986	15	[89]
	linoleic acid	1.013-1.128	1.152-4.106	1.1880-1.9870	71	[84]
	linoleic acid methyl ester	1 013-1 079	1 897_4 553	1 5767_1 9821	21	[108 111]
	L-menthone	1.013-1.112	2.033-4.065	1.3894-1.9838	23	[110]
	methanol	1.030	1.287-2.846	1.2360-1.8121	10	[70]
	monoolein	1.030	1.356-3.388	1.3430-1.8776	11	[105]
	muristic acid athul astar	1 012 1 046	1 210 2 952	1 2002 1 0126	16	[00 100]
	myristoleic acid	1.015-1.040	1.310-2.832	0.9770-1.8776	42	[99,100]
	ingriscolere dela	11000 11120				[]
	myristoleic acid methyl ester	1.030-1.128	1.084-1.897	0.4807-1.2360	79	[112]
	N-(4-methoxybenzy-lidene)-4-n-butylaniline	1.031	1.626-2.168	1.5271-1.6937	5	
	naphthalene n butulbonzono	0.948-1.096	0.911-13.550	0.6480-2.3739	83	[62,73,113,114]
	<i>n</i> -decape	0.984_1.013	2.033-4.743	1.2935-1.9975	15	[00]
	<i>n</i> -dodecane	0.984-1.013	1.220-1.423	1.5592-1.7450	5	[115]
	n-heptane	0.984-1.013	1.220-1.423	1.5592-1.7450	5	[115]
	<i>n</i> -hexane	0.984-1.013	1.220-1.423	1.5592-1.7450	5	[115]
	nitrobenzene	1.029-1.095	2.033-4.743	1.2955-1.9971	15	[74]
	<i>n</i> -nonane	0.984-1.013	1.220-1.423	1.5592-1.7450	5	[115]
	<i>n</i> -octane	0.984-1.013	1.220-1.423	1.5592-1.7450	5	[115]
	<i>n</i> -pentylbenzene	1 013-1 309	2 033-4 743	1 2955-2 0343	31	[68]
	<i>n</i> -propylbenzene	1.013-1.096	1.152-4.743	0.7638-1.9973	34	[63,90]
	n-tetradecane	0.984-1.013	1.220-1.423	1.5592-1.7450	5	[115]
	<i>n</i> -undecane	0.984-1.013	1.220-1.423	1.5592-1.7450	5	[115]
	oleic acid	1.030	1.282-4.079	1.2246-1.9436	19	[105]
	oleic acid methyl ester	1.030	1.165-1.491	0.8052-1.4594	5 10	[105]
	palladium(II) acetylacetonate	1.013-1 128	1.152-5 420	1.2016-2.0757	125	[102]
	palmitic acid ethyl ester	1.013-1.046	1.310-2.852	1.2802-1.8136	17	[116]
	<i>p</i> -dichlorobenzene	0.980-1.046	1.252-2.317	1.1479-1.8669	13	[96]
	phenanthrene	0.997-1.096	1.308-3.591	1.0821-1.9242	19	[62,109]
	phenol	1.013-1.079	1.089-4.103	0.7574-1.9868	109	[42,70,80,86,87]
	phenylacetic acid	1.013-1.046	1.310-2.852	1.2802-1.8136	16	[117]
	phenylacetylelle	1.020-1.090	2.033-4.743	1.2955-1.9973	15	[01]

A.L. Magalhães et al. / Chemical Engineering Journal 166 (2011) 49-72

Table 1 (Continued)

System		<i>T</i> _{r,1}	<i>P</i> _{r,1}	$ ho_{\mathrm{r},1}$	NDP	Data sources
Solvent (1)	Solute (2)					
	phenylmethanol	1.030-1.096	2.033-4.743	1.2955-1.9979	15	[69]
	pyrene	1.209-1.095	14.499-47.425	0.8321-1.9885	18	[67]
	squalene	1.034	1.762-2.439	1.5621-1.7339	5	[71]
	stearic acid ethyl ester	1.013-1.046	1.310-2.852	1.2802-1.8136	17	[88]
	styrene tert-butylbenzene	1.030-1.096	2.033-4.743	1.2959-1.9104	15	[64]
	tetrahvdrofuran	1.030-1.096	1.098-2.197	0.4182-1.7041	15	[104]
	thenoyltrifluoroacetone	1.013-1.046	1.430–3.037	1.2102-1.8870	15	[58]
	toluene	1.007-1.096	1.089-4.743	0.9687-1.9973	35	[42,90,94]
	triarachidonin	1.030	1.348-4.098	1.3330-1.9452	27	[118]
	trierucin	1.013-1.063	1.119-4.073	1.2041-1.9840	101	[105]
	trinervonin	1.013-1.046	1.449-2.924	1.23/5-1.8/31	15	[58]
	triolein	1.015-1.005	1.220-4.072	1 1011-1 6305	10	[105]
	ubiquinone CoQ10	1.013-1.096	1.153-4.095	1.3113-1.9844	80	[87,119]
	vanillin	1.013-1.046	1.396-2.852	1.2802-1.8136	15	[117]
	vitamin K1	1.030	1.355-4.065	1.3418-1.9425	16	[66]
-1.1	vitamin K ₃	1.030	1.214-4.068	1.0177-1.9432	20	[87,111]
chlorotrifluoromethane	acetone	1.037	1.150-2.093	0.68/3-1.6510	10	[120]
ethane	1-octene	0.970-1.055	1.220-2.819	1 5210-1 9683	6	[120]
ethane	1-tetradecene	0.960-1.055	1.414-2.295	1.5190-1.9925	9	[121]
sulfur hexafluoride	1,3,5-trimethylbenzene	1.029	1.117-3.816	0.6806-1.9056	10	[120]
	benzene	1.029	0.931-3.816	0.4083-1.9056	9	[120]
	benzoic acid	1.030-1.061	1.729-3.191	1.2485-1.9065	6	[116]
	carbon tetrachloride	1.029	1.117-3.816	0.6806-1.9056	6	[120]
	naphthalene	0.998-1.030	1.729-3.191	1.5089-2.0278	5	[116]
	toluene	1 029	0.931-3.816	0.4083-1.9056	11	[120]
	tolatile	Liquid sy	stems			[120]
2,2,4-trimethylpentane	1,3,5-trimethylbenzene	0.557-0.612	-	2.7566-2.8675	4	[122]
	benzene	0.557-0.612	-	2.7566-2.8675	4	[122]
	ethylbenzene	0.557-0.612	-	2./566_2.8675	4	[122]
	<i>n</i> -xylene	0.557-0.612	-	2,7566-2,8675	4	[122]
	toluene	0.557-0.612	-	2.7566-2.8675	4	[122]
cyclohexane	1,1'-dimethylferrocene	0.566-0.584	0.047-4.673	2.7456-2.7799	5	[123]
	1,3,5-trimethylbenzene	0.539-0.945	3.931; sat.p.a	1.7566-2.8618	12	[28,124]
	argon	0.566-0.751	-	2.3861-2.7813	6	[125]
	benzene	0.539-0.945	3.931; sat.p.	1./566-2.8618	12	[28,124]
	ethane	0.500-0.751	-	2.3001-2.7013	5	[125]
	ethylene	0.507-0.656	-	2.5947-2.9057	5	[126]
	ethylferrocene	0.566-0.584	0.042-4.673	2.7456-2.7799	6	[123]
	ferrocene	0.566-0.584	0.047-4.673	2.7456-2.7799	5	[123]
	krypton	0.566-0.751	-	2.3861-2.7813	6	[125]
	methane	0.566-0.751	- 2.021. cot p	2.3861-2.7813	6 12	[125]
	napittialelle	0.539-0.945	3.931; sat.p.	1.7566_2.8018	12	[28,124]
	<i>p</i> -xylene	0.539-0.945	sat.p.	1.7566-2.8325	8	[28]
	tetrabutyltin	0.539-0.751	-	2.3861-2.8325	7	[125]
	tetraethyltin	0.539-0.751	-	2.3861-2.8325	7	[125]
	tetramethyltin	0.539-0.751	-	2.3861-2.8325	7	[125]
	tetrapropyltin	0.539-0.751	-	2.3861-2.8325	6	[125]
	toluene	0.539-0.945	3.931; sat.p.	1.7566-2.8618	12	[28,124]
n-decape	12-crown-4	0.539-0.751	-	2.3801-2.8325	0	[125]
<i>n</i> -decalle	12-crown-4	0.483-0.604	-	2.8291-3.0824	4	[127]
	18-crown-6	0.483-0.604	-	2.8291-3.0824	4	[127]
	argon	0.482-0.701	-	2.6077-3.0831	3	[128]
	carbon tetrachloride	0.482-0.604	-	2.8298-3.0831	3	[128]
	dicyclohexano-18-crown-6	0.483-0.604	-	2.8291-3.0824	4	[127]
	dicyclohexano-24-crown-8	0.483-0.604	-	2.8291-3.0824	4	[127]
	krypton	0.482-0.701	-	2.6077-3.0831	3	[128]
	s-trioxape	0.482-0.701 0.483_0.604	-	2.0077-3.0831 2.8201_3.0824	د ۸	[128] [127]
	tetrabutyltin	0.482-0.701	-	2.6077-3.0831	4	[128]
	tetraethyltin	0.482-0.701	-	2.6077-3.0831	3	[128]
	tetramethyltin	0.482-0.701	-	2.6077-3.0831	4	[128]
	tetrapropyltin	0.482-0.701	-	2.6077-3.0831	4	[128]
	xenon	0.482-0.701	-	2.6077-3.0831	4	[128]
n-dodecane	1,3,5-trimethylbenzene	0.461-0.506	8.791	3.0682-3.1519	4	[124]
	acetone	0.461-0.521	8.791	3.0389-3.1519	5	[124]
	carbon dioxide	0.401-0.500 0.462_0.862	0.791 0.765-1.808	2.1292-3.1519 2.1292-3.1028	4 9	[124]
	carbon aronac	0.102 0.002	0.703 1.030	2,1232 3,1020	5	[140]

Table 1 (Continued)

System		<i>T</i> _{r,1}	<i>P</i> _{r,1}	ρ _{r,1}	NDP	Data sources
Solvent (1)	Solute (2)					
	carbon monoxide	0.462-0.862	0.765-1.898	2.1292-3.1028	9	[129]
	hydrogen	0.462-0.862	0.765-1.898	2.1292-3.1028	9	[129]
	linoleic acid methyl ester	0.461-0.506	8.791	3.0682-3.1519	4	[124]
	naphthalene	0.461-0.506	8.791	3.0682-3.1519	4	[124]
	<i>n</i> -decane	0.462-0.860	0.776-0.796	2.1896-3.1067	5	[130]
	<i>n</i> -hexadecane	0.462-0.860	0.776-0.796	2.1896-3.1067	5	[130]
	<i>n</i> -octane	0.462-0.860	0.776-1.890	2.1896-3.1067	9	[130]
	n-tetradecane	0.462-0.860	0.776-0.796	2.1896-3.1067	5	[130]
n oicocano	toluene	0.461-0.506	8.791	3.0682-3.1519	4	[124]
n-elcosalle	carbon monoxide	0.488-0.696	1.226	2.6453-3.1064	5	[131]
	hydrogen	0.488-0.696	1.226	2.6453-3.1064	5	[131]
	<i>n</i> -dodecane	0.489-0.696	1.226	2.6449-3.1064	5	[131]
	n-hexadecane	0.489-0.696	1.226	2.6449-3.1064	5	[131]
	<i>n</i> -octane	0.489-0.696	1.226	2.6449-3.1064	5	[131]
<i>n</i> -neptane	n-decane	0.553-0.883	0.037-1.268	2.2353-2.9290	5	[130]
	<i>n</i> -hexadecane	0.553-0.883	0.037-1.296	2.1638-2.9437	8	[130]
	<i>n</i> -octane	0.553-0.883	0.037-1.268	2.2353-2.9290	4	[130]
	n-tetradecane	0.553-0.883	0.037-1.296	2.2353-2.9437	5	[130]
n-hexadecane	carbon dioxide	0.448-0.781	0.991-2.454	2.3098-3.0928	10	[129]
	carbon monoxide	0.448-0.781	0.991-2.454	2.3098-3.0928	10	[129]
	hydrogen n decano	0.448-0.781	0.991-2.454	2.3098-3.0928	10	[129]
	<i>n</i> -dodecane	0.448-0.781	1.004-1.021	2.3606-3.0917	5	[132]
	<i>n</i> -octane	0.448-0.781	1.004-2.486	2.3606-3.0950	10	[132]
	n-tetradecane	0.448-0.781	1.004-1.021	2.3606-3.0917	5	[132]
<i>n</i> -hexane	1,1'-dimethylferrocene	0.617	0.056-6.319	2.7590-2.7591	4	[123]
	1,3,5-trimethylbenzene	0.597-1.070	b	1.3481-2.8637	20	[124,133]
	acetone	0.597-0.657	5.316	2./521-2.863/	5	[124]
	benzene	0.588-1.070	0.034-128.11 C	1.3481-3.4493	36	[124,126,133,134]
	carbon disulphide	0.588	0.034-127.575	2.8122-3.4665	10	[134]
	ethylferrocene	0.617	0.053-6.316	2.7590-2.7591	4	[123]
	ferrocene	0.617	0.053-6.316	2.7590-2.7591	4	[123]
	indole	0.617	5.316-8.306	2.7907-2.8637	4	[111,124]
	m-xylene	0.597-0.657	5.316 b	2./521-2.8637	5 20	[124] [124 133 134]
	phenanthrene	0.657-1.070	sat.p.: $P_{r,1} > 1$	1.3481-2.6705	15	[133]
	<i>p</i> -xylene	0.617-1.070	b	1.3481-2.8637	17	[124,133]
	toluene	0.588-1.070	d	1.3481-3.4592	28	[124,133]
<i>n</i> -octane	1,3,5-trimethylbenzene	0.533-0.586	-	2.8882-2.9974	4	[122]
	argon	0.524-0.709	-	2.5858-3.0098	4	[128]
	carbon tetrachloride	0.535-0.580	-	2.7361-3.0098	4	[122]
	ethyl benzene	0.533-0.586	-	2.8882-2.9974	4	[122]
	krypton	0.524-0.709	-	2.5858-3.0098	4	[128]
	methane	0.524-0.709	-	2.5858-3.0098	4	[128]
	o-xylene	0.533-0.586	-	2.8882-2.9974	4	[122]
	<i>p</i> -xylene	0.533-0.586	-	2.8882-2.9974	4	[122]
	tetraethyltin	0.524-0.761	_	2.4799-3.0159	5	[128]
	tetramethyltin	0.524-0.761	-	2.4799-3.0159	4	[128]
	tetrapropyltin	0.524-0.761	-	2.4799-3.0159	4	[128]
	toluene	0.533-0.586	-	2.8882-2.9974	4	[122]
2702220	xenon	0.524-0.709	-	2.5858-3.0098	4	[128]
propane	1-occene 1-tetradecene	0.802-0.913	2 092-2 165	2.0441-2.3004	8 8	[121]
	i tettudeeene	0.751 0.512	Gas systems	2.1270 2.5010	0	[121]
argon	ethane	2.035-4.464	0.021	0.0014-0.0030	9	[135]
	hydrogen	0.782-1.963	0.021	0.0031-0.0077	5	[136]
	1-butane	2.026-4.464	0.021	0.0014-0.0030	8	[135]
	nietnane n-butane	2.043-4.464	0.021	0.0014-0.0030	9	[135]
	neon	0.782-9.041	0.021	0.0007-0.0077	25	[136–138]
	propane	2.027-4.503	0.021	0.0013-0.0030	9	[135]
carbon dioxide	ethylene	0.981-1.145	0.146-2.752	0.0365-1.6855	48	[139]
	hydrogen	1.037-1.131	0.014	0.0033-0.0036	7	[140]
carbon monoxide	helium	2.372-2.588	0.029	0.0033-0.0036	7	[140]
deuterium	hydrogen	2.3/2-2.588 2.995-7.682	0.029	0.0033-0.0036	/ 5	[140] [136]
ethane	nitrogen	1.022-2.198	0.021	0.0027-0.0058	14	[140.141]
ethylene	carbon dioxide	1.056-1.233	0.217-3.724	0.0514-1.5935	49	[139]
-	nitrogen	1.143-1.593	0.020	0.0035-0.0049	7	[140]

Table 1 (Continued)

System		<i>T</i> _{r,1}	<i>P</i> _{r,1}	$ ho_{\mathrm{r},1}$	NDP	Data sources
Solvent (1)	Solute (2)					
helium	hydrogen	22.736-176.686	0.446	0.0008-0.0059	17	[136,142]
krypton	argon	1.619-5.708	0.018	0.0009-0.0033	6	[143]
	helium	1.710-5.703	0.018	0.0009-0.0031	6	[143]
	neon	1.304-5.838	0.018	0.0009-0.0041	17	[138,143]
	xenon	1.713-5.313	0.018	0.0010-0.0031	8	[143]
methane	carbon dioxide	1.502-1.932	0.022	0.0033-0.0042	10	[144]
	tetrachloroethene	1.487-1.802	0.022	0.0035-0.0043	5	[145]
neon	deuterium	2.590-6.644	0.037	0.0017-0.0044	5	[136]
	helium	1.725-8.874	0.037	0.0013-0.0066	24	[136-138]
	hydrogen	2.590-6.644	0.037	0.0017-0.0044	5	[136]
	xenon	6.149-8.874	0.037	0.0013-0.0019	6	[138]
nitrogen	helium	2.363-3.947	0.030	0.0022-0.0037	8	[146]
	hydrogen	2.402-3.591	0.030	0.0024-0.0036	29	[147]
	methane	2.486-5.319	0.030	0.0016-0.0035	7	[141]
	<i>n</i> -butane	2.484-5.319	0.030	0.0016-0.0035	5	[141]
	propane	2.508-5.319	0.030	0.0016-0.0035	6	[141]
oxygen	helium	1.929-3.222	0.020	0.0018-0.0030	8	[146]
	hydrogen	1.961-2.931	0.020	0.0020-0.0030	13	[147]
sulfur hexafluoride	cyclohexane	0.888-1.077	0.027	0.0071-0.0086	5	[148]
	methylcyclohexane	0.888-1.077	0.027	0.0071-0.0086	5	[148]
tetrafluoromethane	1,1,1-trichloroethane	1.244-1.508	0.027	0.0050-0.0060	5	[145]
	tetrachloroethene	1.244-1.508	0.027	0.0050-0.0060	5	[145]

^asat. p: saturation pressure. ^b $P_{r,1}$ = 0.498 and 0.532, at saturation pressure and other points at $P_{r,1}$ > 1. ^c $P_{r,1}$ from 0.034 to 122.69 and at saturation pressure. ^d $P_{r,1}$ from 0.034 to 124.58 and at saturation pressure.

From Table 3 it is possible to emphasize its reliability and accuracy, as it provides systematically low average absolute relative deviations (*AARDs*) for almost all solvent-solute pairs, whether in gas, liquid or supercritical state. For the 314 systems and 5421 points of the collected database, the grand *AARD* found is only 4.37% (see Table 4), which makes it a very confident 1-parameter correlation. It should be detached the notable perfor-

mance achieved for systems whose LJ parameters were calculated using critical constants also estimated: e.g. systems containing 1,1'-dimethylferrocene, cobalt(III) acetylacetonate, copper(II) trifluoroacetylacetonate, dibenzo-24-crown-8, ferrocene,γ-linolenic acid ethyl ester, *N*-(4-methoxybenzylidene)-4-*n*-butylaniline, palladium(II) acetylacetonate, squalene, tetrabutyltin, thenoyltrifluoroacetone, triarachidonin, triolein, ubiquinone CoQ10, vitamin K₁,

Fig. 2. Comparison between calculated and experimental tracer diffusivities for gas, liquid and supercritical systems.

Table 2

Data for pure substances.

Substance	Formula	CAS number	M(g/mol)	$T_{\rm c}$ (K)	$P_{\rm c}$ (bar)	$V_{\rm c}$ (cm ³ /mol)	$T_{\rm bp}$ (K)	$V_{\rm bp}^{\rm m}$ (cm ³ /mol)	$\sigma_{\rm LJ}$ (Å)	$\varepsilon_{\rm LJ}/k_{\rm B}$ (K)
1,1,1,5,5,5-hexafluoroacetylacetone	C5H2F6O2	1552-22-1	208.06	569.07 ^a	27.17 ^a	406.05 ^a	410.70 ^j	154.40	6.08561 ^p	440.46 ^p
1,1,1-trichloroethane	C ₂ H ₃ Cl ₃	71-55-6	133.41	545.00 ^b	43.00 ^b	281.00 ^d	347.20 ^b	104.98	5.21212 ^p	421.83 ^p
1,1'-dimethylferrocene	C ₁₂ H ₁₄ Fe	1291-47-0	214.09	514.45 ^c	27.41 ^c	400.64 ^c	353.55 ^k	152.24	5.88660 ^p	398.18 ^p
1,2-dichlorobenzene	C ₆ H ₄ Cl ₂	95-50-1	147.00	729.00 ^b	41.00 ^b	360.00 ^b	452.00 ^b	136.10	5.79009 ^p	564.25 ^p
1.2-diethylbenzene	C10H14	135-01-3	134.22	668.00 ^d	28.80 ^d	502.00 ^d	456.61 ^d	192.83	6.27438 ^p	517.03 ^p
1,3,5-trimethylbenzene	C_9H_{12}	108-67-8	120.20	637.30 ^b	31.30 ^b	433.00 ^d	437.90 ^b	165.15	6.03392 ^p	493.27 ^p
1.3-divinvlbenzene	C10H10	108-57-6	130.19	692.00 ^d	31.20 ^d	440.00 ^d	472.65 ^d	167.95	6.19117 ^p	535.61 ^p
1.4-diethylbenzene	C10H14	105-05-5	134.22	657.96 ^d	28.03 ^d	497.00 ^d	456.94 ^d	190.82	6.29672 ^p	509.26 ^p
12-crown-4	C ₈ H ₁₆ O ₄	294-93-9	176.21	780.66 ^e	33.59 ^e	444.75 ^e	540.08 ^j	169.85	6.27811 ^p	604.23 ^p
15-crown-5	C10H20O5	33100-27-5	220.27	876.80 ^e	28.72 ^e	548.75 ^e	625.60 ^j	211.69	6.79750 ^p	678.64 ^p
18-crown-6	C ₁₂ H ₂₄ O ₆	17455-13-9	264.32	970.51 ^e	24.95 ^e	652.75 ^e	711.12 ^j	253.92	7.26959 ^p	751.17 ^p
1-naphthol	C10H8O	90-15-3	144.17	802.00 ^d	47.37 ^d	375.50 ^d	561.15 ^d	142.24	5.70365 ^p	620.75 ^p
1-octene	C ₈ H ₁₆	111-66-0	112.22	566.70 ^b	26.20 ^b	464.00 ^b	394.40 ^b	177.56	6.14478 ^p	438.63 ^p
1-phenyldodecane	C ₁₈ H ₃₀	123-01-3	246.44	774.26 ^d	15.79 ^d	1000.00 ^d	600.76 ^d	397.05	7.71873 ^p	599.28 ^p
1-phenylethanol	C ₈ H ₁₀ O	98-85-1	122.17	675.30 ^f	40.60 ^f	392.15 ^f	478.16 ¹	148.86	5.67259 ^p	522.68 ^p
1-phenylhexane	C12H18	1077-16-3	162.28	698.00 ^d	23.80 ^d	618.00 ^d	499.26 ^d	239.77	6.71996 ^p	540.25 ^p
1-phenyloctane	C ₁₄ H ₂₂	2189-60-8	190.33	729.00 ^d	20.20 ^d	703.00 ^d	537.55 ^d	274.44	7.12309 ^p	564.25 ^p
1-propanol	C ₃ H ₈ O	71-23-8	60.10	536.80 ^b	51.70 ^b	219.00 ^b	370.30 ^b	80.84	4.49190 ^q	2120.83 ^q
1-tetradecene	C14H28	1120-36-1	196.38	689.00 ^a	15.60 ^b	817.00 ^d	524.30 ^b	321.26	7.51715 ^p	533.29 ^p
2,2,4,4-tetramethyl-3-pentanone	C ₉ H ₁₈ O	815-24-7	142.24	627.18 ^c	30.29 ^c	407.72 ^c	425.35 ^k	155.06	6.06460 ^p	485.44 ^p
2,2,4-trimethylpentane	C ₈ H ₁₈	540-84-1	114.23	544.00 ^b	25.70 ^b	468.00 ^b	372.40 ^b	179.17	6.10500 ^p	421.06 ^p
2,3-dimethylaniline	C ₈ H ₁₁ N	87-59-2	121.18	717.00 ^f	36.30 ^f	400.38 ^f	494.66 ¹	152.14	5.97871 ^p	554.96 ^p
2,3-dimethylbutane	C_6H_{14}	79-29-8	86.18	500.00 ^b	31.30 ^b	358.00 ^b	331.10 ^b	135.31	5.60227 ^p	387.00 ^p
2,3-dimethylnaphthalene	$C_{12}H_{12}$	581-40-8	156.23	777.78 ^d	30.06 ^d	521.50 ^d	541.16 ^d	200.69	6.48023 ^p	602.00 ^p
2,4-dimethyl-3-pentanone	C ₇ H ₁₄ O	565-80-0	114.19	597.13 ^c	35.22 ^c	324.85 ^c	400.85 ^k	122.20	5.70611 ^p	462.18 ^p
2,4-dimethylphenol	$C_8H_{10}O$	105-67-9	122.17	707.60 ^b	44.00 ^d	390.00 ^d	484.10 ^b	148.01	5.61388 ^p	547.68 ^p
2,6-dimethylaniline	$C_8H_{11}N$	87-62-7	121.18	722.00 ^g	42.00 ^g	400.38 ^f	491.05 ^g	152.14	5.73044 ^p	558.83 ^p
2,6-dimethylnaphthalene	$C_{12}H_{12}$	581-42-0	156.23	777.00 ^d	31.70 ^d	520.00 ^d	535.15 ^d	200.09	6.37790 ^p	601.40 ^p
2,7-dimethylnaphthalene	$C_{12}H_{12}$	582-16-1	156.23	778.00 ^d	31.70 ^d	520.00 ^d	536.15 ^d	200.09	6.38032 ^p	602.17 ^p
2-bromoanisole	C ₇ H ₇ BrO	578-57-4	187.04	737.58 ^f	40.04 ^f	378.05 ^f	489.16 ¹	143.26	5.85312 ^p	570.89 ^p
2-butanone	C_4H_8O	78-93-3	72.11	536.80 ^b	42.10 ^b	267.00 ^b	352.70 ^b	99.50	5.22195 ^p	415.48 ^p
2-ethyltoluene	C ₉ H ₁₂	611-14-3	120.20	651.00 ^b	30.40 ^b	460.00 ^b	438.30 ^b	175.96	6.12635 ^p	503.87 ^p
2-fluoroanisole	C ₇ H ₇ FO	321-28-8	126.13	644.81 ^f	38.11 ^f	328.87 ^f	427.66 ¹	123.79	5.70253 ^p	499.08 ^p
2-heptanone	$C_7H_{14}O$	110-43-0	114.19	611.50 ^b	34.40 ^b	421.00 ^d	424.20 ^b	160.36	5.78966 ^p	473.30 ^p
2-methylanisole	C ₈ H ₁₀ O	578-58-5	122.17	648.79 ^f	35.60 ^f	371.70 ^f	444.16 ¹	140.74	5.83396 ^p	502.16 ^p
2-naphthol	C ₁₀ H ₈ O	135-19-3	144.17	811.40 ⁱ	47.40 ⁱ	375.50 ⁱ	558.65 ^k	142.24	5.72302 ^p	628.02 ^p
2-nitroanisole	$C_7H_7NO_3$	91-23-6	153.14	782.00 ^d	37.60 ^d	422.00 ^d	546.15 ^d	160.76	6.07271 ^p	605.27 ^p
2-nonanone	C ₉ H ₁₈ O	821-55-6	142.24	644.29 ^d	24.53 ^d	545.50 ^d	346.95 ^g	210.38	6.50874 ^p	498.68 ^p
2-pentanone	$C_5H_{10}O$	107-87-9	86.13	561.10 ^b	36.90 ^b	301.00 ^b	375.40 ^b	112.82	5.51733 ^p	434.29 ^p
2-phenyl-1-propanol	$C_9H_{12}O$	1123-85-9	136.20	662.02^{f}	36.90 ^f	443.23 ^f	476.16 ¹	169.24	5.80605 ^p	512.40 ^p
2-phenylethanol	C ₈ H ₁₀ O	60-12-8	122.17	684.00 ^d	39.20 ^d	387.00 ^d	492.05 ^d	146.81	5.75677 ^p	529.42 ^p
2-phenylethyl acetate	$C_{10}H_{12}O_2$	103-45-5	164.10	712.23 ^f	30.12 ^f	524.15 ^f	505.16 ¹	201.76	6.31046 ^p	551.27 ^p
2-propanol	C_3H_8O	67-63-0	60.10	508.30 ^b	47.60 ^b	220.00 ^b	355.40 ^b	81.23	4.93749 ^p	393.42 ^p
3-ethyltoluene	C_9H_{12}	620-14-4	120.20	637.00 ^b	28.40 ^b	490.00 ^b	434.50 ^b	188.01	6.21196 ^p	493.04 ^p
3-nitrotoluene	$C_7H_7NO_2$	99-08-1	137.14	734.00 ^d	38.00 ^d	441.00 ^d	505.00 ^d	168.35	5.93831 ^p	568.12 ^p
3-pentanone	$C_5H_{10}O$	96-22-0	86.13	561.00 ^b	37.30 ^b	336.00 ^b	375.10 ^b	126.60	5.49858 ^p	434.21 ^p
3-phenyl-1-propanol	$C_9H_{12}O$	122-97-4	136.20	702.30 ^f	36.40 ^f	455.45 ^f	508.16 ¹	174.14	5.93627 ^p	543.58 ^p
3-phenylpropyl acetate	$C_{11}H_{14}O_2$	122-72-5	178.30	718.70 ^f	27.23 ^f	580.37 ^f	518.16 ¹	224.50	6.51801 ^p	556.27 ^p
4-ethyltoluene	C_9H_{12}	622-96-8	120.20	640.00 ^b	29.40 ^b	470.00 ^b	435.20 ^b	179.97	6.15660 ^p	495.36 ^p
4-heptanone	$C_7 H_{14} O$	123-19-3	114.19	595.31 ^d	29.96 ^d	433.50 ^d	416.67 ^g	165.35	5.98953 ^p	460.77 ^p
4-methylanisole	$C_8H_{10}O$	104-93-8	122.17	655.36 ^f	35.60 ^f	371.70 ^f	448.66 ¹	140.74	5.85195 ^p	507.25 ^p
5-nonanone	$C_9H_{18}O$	502-56-7	142.24	640.00 ^g	23.20 ^h	560.00 ^h	461.60 ^g	216.24	6.60236 ^p	495.36 ^p
5- <i>tert</i> -butyl- <i>m</i> -xylene	C12H18	98-19-1	162.28	684.85 ^f	23.90 ^f	591.75 ^f	480.16 ¹	229.11	6.67527 ^p	530.07 ^p
6-undecanone	$C_{11}H_{22}O$	927-49-1	170.30	678.50 ^h	20.52 ^h	692.00 ^h	500.55 ^h	269.95	6.95240 ^p	525.16 ^p
acetone	C_3H_6O	666-52-4	58.08	508.10 ^b	47.00 ^b	209.00 ^b	329.20 ^b	76.98	4.67012 ^q	332.97 ^q

Table 2 (Continued)

Substance	Formula	CAS number	M(g/mol)	$T_{\rm c}$ (K)	$P_{\rm c}$ (bar)	$V_{\rm c}$ (cm ³ /mol)	$T_{\rm bp}$ (K)	$V_{\rm bp}^{\rm m}$ (cm ³ /mol)	$\sigma_{ m LJ}$ (Å)	$\varepsilon_{\rm LJ}/k_{\rm B}$ (K)
acetonitrile	C ₂ H ₃ N	75-05-8	41.05	545.50 ^b	48.30 ^b	173.00 ^b	354.80 ^b	63.14	4.02424 ^q	652.53 ^q
acridine	C ₁₃ H ₉ N	260-94-6	179.22	905.00 ^h	36.40 ^h	543.00 ^h	619.15 ^h	209.37	6.40475 ^p	700.47 ^p
adamantanone	C ₁₀ H ₁₄ O	700-58-3	150.22	759.15 ^c	31.55 ^c	368.22 ^c	519.85 ^k	139.36	6.34311 ^p	587.58 ^p
α-linolenic acid	C ₁₈ H ₃₀ O ₂	463-40-1	278.44	780.00 ^h	14.40 ^h	1070.00 ^h	632.00 ^h	426.23	7.90702 ^p	603.72 ^p
allylbenzene	C_9H_{10}	300-57-2	118.18	639.86 ^f	33.50 ^f	419.80 ^f	429.16 ¹	159.88	5.91809 ^p	495.25 ^p
aniline	C_6H_7N	62-53-3	93.13	699.00 ^b	53.10 ^b	274.00 ^b	457.60 ^b	102.24	5.27450 ^p	541.03 ^p
anisole	C ₇ H ₈ O	100-66-3	108.14	641.65 ^d	41.75 ^d	337.00 ^d	426.73 ^d	127.00	5.53560 ^p	496.64 ^p
anthracene	C14H10	120-12-7	178.23	873.00 ^d	29.00 ^d	554.00 ^d	615.18 ^d	213.82	6.77034 ^p	675.70 ^p
α-pinene	C10H16	80-56-8	136.24	632.00 ^d	27.60 ^d	504.00 ^d	429.29 ^d	193.64	6.25044 ^p	489.17 ^p
arachidonic acid (AA)	C ₂₀ H ₃₂ O ₂	506-32-1	304.47	1013.42 ^e	12.74 ^e	1093.20 ^e	819.15 ^j	435.92	8.55861 ^p	784.39 ^p
AA ethyl ester	C22H36O2	1808-26-0	332.53	960.63 ^a	11.31ª	1195.26 ^a	777.62 ^j	478.66	8.64877 ^p	743.53 ^p
argon	Ar	7440-37-1	39.95	150.80 ^b	48.70 ^b	74.90 ^b	87.30 ^b	26.26	3.40744 ^q	123.55 ^q
α-tocopherol	C20H50O2	59-02-9	430.71	964.30 ^h	10.80 ^h	1720.00 ^h	787.80 ^h	700.94	8.71108 ^p	746.37 ^p
β-carotene	C40H56	7235-40-7	536.88	1450.76 ^e	6.90 ^e	1934.95 ^e	1209.38 ^j	793.00	10.08103 ^s	1122.89 ^p
behenic acid ethyl ester	C24H48O2	5908-87-2	368 64	984 94 ^a	9 1 5 ^a	1394 66 ^a	806 74 ^j	562.66	9.03867 ^s	762 34 ^p
benzene	C6H6	71-43-2	78 11	562.20 ^b	48 90 ^b	259 00 ^b	353 20 ^b	96.38	5 19165 ^q	308 43 ^q
benzoic acid	C ₇ H ₆ O ₂	65-85-0	122.12	752.00 ^b	45.60 ^b	341.00 ^b	523.00 ^b	128.58	5.65763 ^p	582.05 ^p
benzyl acetate	CoH10O2	140-11-4	150.18	699 00 ^d	31 80 ^d	449 00 ^d	486 65 ^d	171 55	6 17454 ^p	541 03 ^p
benzylacetone	C10H12O	2550-26-7	148 20	722.51 ^f	31.20 ^f	500 50 ^f	506 66 ¹	192.23	6 27139 ^p	559 22 ^p
binhenvl	C12H10	92-52-4	15421	789.00 ^b	38 50 ^b	502.00 ^b	529 30 ^b	192.23	6.04576P	610.69P
B-pipene	C10H16	127-91-3	136.24	643 00 ^d	27.60 ^d	506.00 ^d	439 19 ^d	194.44	6 28262P	497 68P
bromobenzene	CoHeBr	108-86-1	157.01	670.00 ^b	45.20 ^b	324 00 ^b	429.20 ^b	121.87	5.47376P	518 58P
buturic acid ethyl ester	CoHerOn	105-54-4	116.20	579.00 ⁱ	43.20 31.40 ⁱ	400.00 ⁱ	303 15 ^m	151.00	5.85/01P	148 15P
coffeine	C-H-N-O-	58_08_2	10/20	855.60 ⁱ	41 50 ⁱ	400.00 488.00 ⁱ	451.15 ^m	187.20	6.05672P	662 23P
capric acid ethyl ester	C ₈ H ₁₀ N ₄ O ₂	110_38_3	200.00	600 30i	17.88 ⁱ	733 50 ⁱ	518 15 ^m	286.04	7 28024P	5/1 26P
capite acid ethyl ester	$C_{12} C_{124} O_2$	106 22 1	172.20	655 70i	17.00 21.19i	621 50i	490.15m	280.94	6 924520	507 51P
capitylic acid etilyl ester	$C_{10} \Pi_{20} U_2$	100-52-1	172.50	204 10b	21.10 [°]	021.30 [°]	400.15 ^m	241.20	2.261020	507.51F
carbon digulabida	CO ₂	75 15 0	44.01 76.12	504.10°	75.60°	95.90°	194.70 ⁻	55.20	4 200010	276 510
carbon monovido	C32	75-15-0	70.15	122.00 ⁻	79.00 ⁻	100.00 ⁻	519.00°	22.02	4.29901 ⁴	102.960
carbon totre chloride	CO	030-08-0 5C 22 5	20.01	152.90°	35.00- 45.00	95.20°	240.00b	33.02	5.35302	102.00
chlorohonzono		102 00 7	1125.62	622.40b	45.00 45.00	273.90	349.90	102.90	5.29240	207 500
chlorotrifluoromothano	CCIE	75 72 0	104.46	202.40	43.20 29.70h	100.00	404.90	65.09	4.276260	410 700
chilorottilluorottiettialle		75-72-9	104.40	070.00d	20.70°	100.40 ⁻	195.20- 714.15d	260.12	4.57050 ¹	410.79 ⁴
chrysene	C ₁₈ H ₁₂	218-01-9	228.29	979.00°	23.90	690.00 ^c	/ 14.15°	209.13	7.37050P	/3/./3 ^P
Citifal	$C_{10}H_{16}U$	5392-40-5 21670 46 0	152.24	692.70°	23.15	591.00 ^c	502.20"	228.81	0.75808P	230.13P
codalt (III) acetylacetollate	$C_{15}H_{21}C_{0}U_{6}$	216/9-46-9	350.20	573.48°	2.52	640.95	411.55°	249.11	6.97520°	443.87P
copper(II) trinuoroacetyiacetonate	$C_{10}H_8CuF_6O_4$	14324-82-4	369.70	412.85	20.63	441.13	299.15 [*]	108.40	6.00246 ^P	319.55 ^P
cycloneptanone	C7H12U	502-42-1	112.17	6/1.19 ^e	36.86°	297.87°	453.15°	111.59	5.83247	519.50 ^p
cyclonexane	C ₆ H ₁₂	110-82-7	84.16	553.50°	40.705	308.005	353.80 ⁸	115.57	5./30/54	224.874
cyclononanone	$C_9H_{16}O$	3350-30-9	140.22	702.10 ^e	31.47°	380.74°	478.25 [×]	144.33	6.20206 ^p	543,43 ^p
cyclopentanone	C ₅ H ₈ O	120-92-3	84.12	626.00 ^a	58.50 ^a	258.00 ^a	403.80 ^a	95.99	4.94075 ^p	484.52 ^p
deuterium	D_2	//82-39-0	4.03	38.40	16.50	60.305	23.60 ⁶	20.92	3.01200 ^p	29.72 ^p
dibenzo-24-crown-8	C ₂₄ H ₃₂ O ₈	141/4-09-5	448.51	1396.77°	15.80°	11/4.35°	1111.44	469.89	8.69916 ^p	1081.10 ^p
dibenzyl ether	C ₁₄ H ₁₄ O	103-50-4	198.27	///.00 ^u	25.60 ^a	608.00 ^d	561.45 ^u	235.71	6.78621 ^p	601.40 ^p
dicyclohexano-18-crown-6	C ₂₀ H ₃₆ O ₆	16069-36-6	372.50	1177.47	16.24 ^e	1002.75°	906.84	398.19	8.41774 ^p	911.36 ^p
dicyclohexano-24-crown-8	$C_{24}H_{44}O_8$	1/455-23-1	460.61	1357.66°	13.48 ^e	1210.75°	1077.88 ^j	485.16	8.62250°	1050.83 ^p
diethyl ether	$C_4H_{10}O$	60-29-7	74.12	466.70 ^b	36.40 ^b	280.00 ^b	307.60 ^b	104.58	5.23105 ^p	361.23 ^p
disopropyl ether	$C_{6}H_{14}O$	108-20-3	102.18	500.30 ⁵	28.80 ^b	386.00	341.70 ^b	146.42	5.74891 ^p	387.23 ^p
diolein	C ₃₉ H ₇₂ O ₅	2465-32-9	621.99	1025.00 ⁿ	7.92 ⁿ	2150.00 ⁿ	920.00 ⁿ	885.61	10.44146 ^s	793.35 ^p
D-limonene	C ₁₀ H ₁₆	138-86-3	136.24	660.00 ^d	27.50 ^a	524.00ª	449.65 ^d	201.70	6.33828 ^p	510.84 ^p
docosahexaenoic acid (DHA)	C ₂₂ H ₃₂ O ₂	6217-54-5	328.49	1075.45 ^a	12.41 ^a	1148.05 ^a	873.23 ^j	458.86	8.67455 ^p	832.40 ^p
DHA ethyl ester	$C_{24}H_{36}O_2$	84494-72-4	356.55	1023.28 ^a	10.84 ^a	1262.06 ^a	831.70 ^j	506.73	8.77291 ^p	792.02 ^p
DHA methyl ester	$C_{23}H_{34}O_2$	28061-46-3	342.52	999.34 ^a	11.41 ^a	1206.56 ^a	808.82 ^j	483.40	8.68778 ^p	773.49 ^p
eicosapentaenoic acid (EPA)	$C_{20}H_{30}O_2$	10417-94-4	302.46	1020.90 ^a	13.47 ^a	1059.15 ^a	823.31 ^j	421.70	8.48687 ^p	790.18 ^p
EPA ethyl ester	$C_{22}H_{34}O_2$	84494-70-2	330.51	968.16 ^a	11.67 ^a	1173.16 ^a	781.78 ^j	469.39	8.61744 ^p	749.36 ^p
EPA methyl ester	$C_{21}H_{32}O_2$	2734-47-6	316.48	890.55 ^a	11.90 ^a	1187.03 ^a	758.90 ^j	475.20	8.46741 ^p	689.29 ^p
ethane	C_2H_6	74-84-0	30.07	305.40 ^b	48.80 ^b	148.30 ^b	184.60 ^b	53.73	4.17587 ^q	213.99 ^q
ethanol	C_2H_6O	64-17-5	46.07	513.90 ^b	61.40 ^b	167.10 ^b	351.40 ^b	60.89	4.23738 ^q	1291.41 ^q

Table 2 (Continued)

Substance	Formula	CAS number	M(g/mol)	$T_{\rm c}$ (K)	$P_{\rm c}$ (bar)	$V_{\rm c}$ (cm ³ /mol)	$T_{\rm bp}$ (K)	V_{bp}^{m} (cm ³ /mol)	$\sigma_{ ext{LJ}}$ (Å)	$\varepsilon_{\rm LJ}/k_{\rm B}$ (K)
ethyl acetate	C ₄ H ₈ O ₂	141-78-6	88.11	523.20 ^b	38.30 ^b	286.00 ^b	350.30 ^b	106.93	5.33606 ^p	404.96 ^p
ethyl benzoate	$C_9H_{10}O_2$	93-89-0	150.18	668.70 ^b	23.20 ^b	489.00 ^d	485.90 ^b	187.60	6.68655 ^p	517.57 ^p
ethylbenzene	C ₈ H ₁₀	100-41-4	106.17	617.20 ^b	36.00 ^b	374.00 ^b	409.30 ^b	141.65	5.72572 ^p	477.71 ^p
ethylene	C_2H_4	74-85-1	28.05	282.40 ^b	50.40 ^b	130.40 ^b	169.30 ^b	46.95	4.04838 ^q	169.08 ^q
ethylferrocene	C ₁₂ H ₁₄ Fe	1273-89-8	214.09	554.21 ^c	27.41 ^c	400.64 ^c	381.75°	152.24	6.02119 ^p	428.96 ^p
eugenol	C10H12O2	97-53-0	164 20	735 31 ^f	33 52 ^f	447 23 ^f	526 36 ¹	170.84	6 17078 ^p	569 13 ^p
ferrocene	CioHioFe	102-54-5	186.04	786.27°	32.079	317 779	522.150	119.42	6 37838P	608 57P
fluorobenzene	CaHaE	462-06-6	96.10	560.10 ^b	45 50 ^b	269.00 ^b	357.90 ^b	100.28	5 16448P	433 52P
2-lipolenic acid	CroHaoOa	506-26-3	278 44	058 084	1/ 174	002 354	760 231	303.87	8 30/82P	7/2 25P
y-linolenic acid ethyl ester	C18113002	1101_/1_0	306.48	037 01 ^c	17.56 ^c	707 37 ^c	663 73 ^k	313 17	7 87805P	725.25 ^p
y-linolenic acid methyl ester	C ₂₀ 1134O ₂	301_00_8	202.46	882 70ª	12 024	1050.864	704 82i	/18.2/	8 32085P	683 28P
belium	Ho	7440-59-7	4.00	5 10 ^b	2 2 7 b	57.40b	/ 04.02	10.24	2 00/53P	4 02p
hovachlorobonzono		110 74 1	204 70	\$25 00d	2.27	526 00d	-1.2J	202.51	6 604910	629 550
hexacilloiobelizelle		1222 74 0	204.70	323.00	12 00b	520.00	302.33	202.31	5 041110	2 455 020
		1555-74-0	2.02	33.00°	12.90°	04.50°	20.50°	22.30	5.94111 ⁴	3.43E-05
I-Dutane	C_4H_{10}	/ 5-28-5	38.12	408.20 ³	30.30 ⁰	263.00 ⁵	201.40 ³	97.94	5.01034 ^p	315.95 ^p
indole	C ₈ H ₇ N	120-72-9	117.15	790.00 ^a	43.00 ^a	431.00 ^a	526.15°	104.35	5.84837P	611.40 ^P
lodobenzene	C ₆ H ₅ I	591-50-4	204.01	721.00 ⁵	45.20 ⁵	351.00°	461.60 ⁸	132.53	5.59976 ^P	558.05 ^p
i-propyidenzene	C ₉ H ₁₂	98-82-8	120.20	631.10 ⁵	32.10 ^b	427.70 ^u	425.60 ^b	163.03	5.97029 ^p	488.47P
krypton	Kr	/439-90-9	83.80	209.40	55.00	91.20	119.90	32.28	2.898704	511.92 ^q
L-carvone	$C_{10}H_{14}O$	2244-16-8	150.22	709.40	26.30 ⁴	504.65	507.92	193.90	6.55942 ^p	549.08 ^p
linalool	$C_{10}H_{18}O$	78-70-6	154.25	645.80 ^e	25.95 ^e	558.00 ^e	472.00 ⁿ	215.44	6.40654 ^p	499.85 ^p
linoleic acid	$C_{18}H_{32}O_2$	60-33-3	280.45	775.00 ⁿ	14.10 ⁿ	990.00 ⁿ	628.00 ⁿ	392.89	7.93427 ^p	599.85 ^p
linoleic acid methyl ester	$C_{19}H_{34}O_2$	112-63-0	294.48	870.78 ^a	12.54 ^a	1070.95 ^a	700.66 ^j	426.62	8.34769 ^p	673.98 ^p
L-menthone	$C_{10}H_{18}O$	14073-97-3	154.25	699.44 ^r	25.30 ^r	525.24 ^r	499.40 ^r	202.20	6.60650 ^p	541.37 ^p
methane	CH ₄	74-82-8	16.04	190.40 ^b	46.00 ^b	99.20 ^b	111.60 ^p	35.25	3.58484 ^q	167.15 ^q
methanol	CH ₄ O	67-56-1	32.04	512.60 ^b	80.90 ^b	118.00 ^b	337.70 ^b	42.28	3.79957 ^q	685.96 ^q
methylcyclohexane	C_7H_{14}	108-87-2	98.19	572.20 ^b	34.70 ^b	368.00 ^b	374.10 ^b	139.27	5.65749 ^p	442.88 ^p
monoolein	$C_{21}H_{40}O_4$	111-03-5	356.55	885.00 ^h	12.40 ^h	1210.00 ^h	714.00 ^h	484.85	8.39247 ^p	684.99 ^p
<i>m</i> -xylene	C ₈ H ₁₀	108-38-3	106.17	617.10 ^b	35.40 ^b	376.00 ^b	412.30 ^b	142.44	5.75507 ^p	477.64 ^p
myristic acid ethyl ester	$C_{16}H_{32}O_2$	124-06-1	256.43	789.35 ^a	13.89 ^a	950.66 ^a	623.70 ^j	376.54	7.99595 ^p	610.96 ^p
myristoleic acid	$C_{14}H_{26}O_2$	544-64-9	226.36	854.23 ^e	16.97 ^e	819.90 ^e	669.39 ^j	322.45	7.76875 ^p	661.17 ^p
myristoleic acid methyl ester	$C_{15}H_{28}O_2$	56219-06-8	240.39	777.79 ^e	15.26 ^e	876.45 ^e	604.98 ^j	345.80	7.79244 ^p	602.01 ^p
N-(4-methoxybenzylidene)-4-n-butylaniline	C ₁₈ H ₂₁ NO	26227-73-6	267.37	962.06 ^c	21.33 ^c	592.93°	677.05 ^k	229.59	7.55785 ^p	744.63 ^p
naphthalene	C10H8	91-20-3	128.17	748.40 ^b	40.50 ^b	413.00 ^b	491.10 ^b	157.17	5.85874 ^p	579.26 ^p
<i>n</i> -butane	C_4H_{10}	106-97-8	58.12	425.20 ^b	38.00 ^b	255.00 ^b	272.70 ^b	94.82	5.01118 ^p	329.10 ^p
n-butylbenzene	C ₁₀ H ₁₄	104-51-8	134.22	660.50 ^b	28.90 ^b	497.00 ^b	456.50 ^b	190.82	6.24687 ^p	511.23 ^p
n-decane	C10H22	124-18-5	142.29	617.70 ^b	21.20 ^b	603.00 ^b	447.30 ^b	233.68	6.71395 ^q	434.86 ^q
n-dodecane	C12H26	112-40-3	170.34	658.20 ^b	18.20 ^b	713.00 ^b	489.50 ^b	278.54	7.00451 ^q	672.90 ^q
n-eicosane	$C_{20}H_{42}$	112-95-8	282.56	767.00 ^b	11.10 ^b	1190.00 ^d	617.00 ^b	476.45	8.33954 ^p	593.66 ^p
neon	Ne	7727-37-9	20.18	44.40 ^b	27.60 ^b	41.60 ^b	27.10 ^b	14.18	2.66839 ^p	34.37 ^p
<i>n</i> -heptane	C ₇ H ₁₆	142-82-5	100.21	540.30 ^b	27.40 ^b	432.00 ^b	371.60 ^b	164.75	5.94356 ^q	404.05 ^q
n-hexadecane	C ₁₆ H ₃₄	544-76-3	226.45	722.00 ^b	14.10 ^b	930.00 ^d	560.00 ^b	367.97	7.36480 ^q	1669.19 ^q
<i>n</i> -hexane	C6H14	110-54-3	86.18	507.50 ^b	30.10 ^b	370.00 ^b	341.90 ^b	140.06	5.61841 ^q	434.76 ^q
nitrobenzene	C6H5NO2	98-95-3	123.11	719.00 ^d	44.00 ^d	349.00 ^d	483.95 ^d	131.74	5.64167 ^p	556.51 ^p
nitrogen	N ₂	7727-37-9	28.01	126.20 ^b	33.90 ^b	89.80 ^b	77.40 ^b	31.76	3.51283 ^p	97.68 ^p
<i>n</i> -nonane	CoHao	111-84-2	128.26	594.60 ^b	22.90 ^b	548.00 ^b	424.00 ^b	211.39	6.43057 ^q	497.35 ^q
<i>n</i> -octane	C. H10	111-65-9	114.23	568.80 ^b	24.90 ^b	492.00 ^b	398.80 ^b	188.81	6.17328 ^q	478.32 ^q
n-pentane	C-H12	109-66-0	72.15	469 70 ^b	33 70 ^b	304 00 ^b	309.20 ^b	114.00	5 36967P	363 55P
<i>n</i> -pentylbenzene	C11H10	538-68-1	148 25	679 90 ^d	26.04 ^d	550.00 ^d	478 61 ^d	212.20	6 49745P	526 24P
n-propylbenzene	CoHia	103-65-1	120.20	638.20 ^b	32 00 ^b	440.00 ^b	432 40 ^b	167.95	5 99624P	493 97P
n-tetradecape	Cr Haa	620-50-4	108.30	603 00b	14 40 ^b	830 00p	526 70 ^b	326.62	7 68286P	536 38P
n-undecane	C141130	1120-21-4	156.33	638 80p	10 70 ^b	660.00 ^b	460 10 ^b	256.88	6 01/1/1 ^p	10/ 13P
olaic acid		1120-21-4	130.31	781 00h	13.70 13.00h	1000.00 ^h	409.10	200.00	7 075020	434.43' 604 400
oloic acid athyl actor		112-00-1	202.47	201.00 ¹⁰	11 200	1154 200	710 291	J97.0J 461.44	9.5271ED	600.280
oloic acid mothyl ester	C U O	111-02-0	310.32 206.40	051.5/- 060 CEP	11.30-	1134.20	606 EQI	401.44	0,J3/13 ^r 0,4130/h	672 240
orere actu metnyi ester	C ₁₉ П ₃₆ U ₂	112-02-9	290.49	000.00°	12.01°	1090.03°	00.00	430.19	0.41384 ^P	072,34 ^P
oxygen		//82-44-/	32.00	154.60°	50.40°	/3.40°	90.20 ⁵	25.71	3.29/28 ^P	119.00 ^P
o-xyiene	C_8H_{10}	95-47-6	106.17	630.30°	37.300	369.00%	417.60	139.67	5.70029 ^p	487.85 ^p

Table 2 ((Continued)
-----------	-------------

Substance	Formula	CAS number	M(g/mol)	$T_{\rm c}$ (K)	$P_{\rm c}$ (bar)	$V_{\rm c}~({\rm cm^3/mol})$	$T_{\rm bp}~({\rm K})$	V_{bp}^{m} (cm ³ /mol)	$\sigma_{ m LJ}$ (Å)	$\varepsilon_{\rm LJ}/k_{\rm B}$ (K)
palladium(II) acetylacetonate	C10H14O4Pd	14024-61-4	304.64	651.12 ^c	4.13 ^c	435.41 ^c	460.75°	166.11	6.13171 ^s	503.97 ^p
palmitic acid ethyl ester	C ₁₈ H ₃₆ O ₂	628-97-7	284.48	835.62 ^a	12.36 ^a	1061.66 ^a	669.46 ^j	422.74	8.30307 ^p	646.77 ^p
p-dichlorobenzene	$C_6H_4Cl_2$	106-46-7	147.00	684.75 ^d	40.70 ^d	351.00 ^d	447.21 ^d	132.53	5.69261 ^p	530.00 ^p
phenanthrene	$C_{14}H_{10}$	85-01-8	178.23	873.00 ^b	29.00 ^d	554.00 ^b	613.00 ^b	213.82	6.77034 ^p	675.70 ^p
phenol	C ₆ H ₆ O	108-95-2	94.11	694.20 ^b	61.30 ^b	229.00 ^b	455.00 ^b	84.71	5.03026 ^p	537.31 ^p
phenylacetic acid	$C_8H_8O_2$	103-82-2	136.15	783.55 ^e	38.50 ^e	422.60 ^e	554.63 ^j	161.00	6.03311 ^p	606.47 ^p
phenylacetylene	C ₈ H ₆	536-74-3	102.14	655.43 ^d	44.03 ^d	337.50 ^d	418.36 ^d	127.20	5.48099 ^p	507.30 ^p
phenylmethanol	C7H8O	100-51-6	108.14	720.20 ^b	44.00 ^b	335.00 ^d	478.60 ^b	126.21	5.64457 ^p	557.43 ^p
propane	C_3H_8	74-98-6	44.09	369.80 ^b	42.50 ^b	203.00 ^b	231.10 ^b	74.66	4.50412 ^q	457.99 ^q
<i>p</i> -xylene	C ₈ H ₁₀	106-42-3	106.17	616.20 ^b	35.10 ^b	379.00 ^b	411.50 ^b	143.63	5.76754 ^p	476.94 ^p
pyrene	C ₁₆ H ₁₀	129-00-0	202.26	936.00 ^d	26.10 ^d	630.00 ^d	667.95 ^d	244.65	7.11077 ^p	724.46 ^p
squalene	C ₃₀ H ₅₀	111-02-4	410.72	974.94 ^c	13.23 ^c	1128.14 ^c	702.45 ^k	450.53	8.44342 ^p	754.60 ^p
stearic acid ethyl ester	$C_{20}H_{40}O_2$	111-61-5	312.54	883.39 ^a	11.09 ^a	1172.66 ^a	715.22 ^j	469.18	8.56060 ^p	683.74 ^p
s-trioxane	$C_3H_6O_3$	110-88-3	90.08	604.00 ^d	58.20 ^d	206.00 ^d	387.65 ^d	75.82	4.89292 ^p	467.50 ^p
styrene	C ₈ H ₈	100-42-5	104.15	647.00 ^b	39.90 ^b	352.00 ^d	418.30 ^b	132.93	5.62827 ^p	500.78 ^p
sulfur hexafluoride	SF ₆	2551-62-4	146.05	318.70 ^b	37.60 ^b	198.80 ^b	209.60 ^b	73.04	4.76629 ^q	271.68 ^q
tert-butylbenzene	C ₁₀ H ₁₄	98-06-6	134.22	660.00 ^b	29.60 ^b	492.00 ^d	442.30 ^b	188.81	6.20099 ^p	510.84 ^p
tetrabutyltin	C ₁₆ H ₃₆ Sn	1461-25-2	347.17	767.97 ^c	17.25 ^c	760.75 ^c	548.45 ^k	298.12	7.53261 ^p	594.41 ^p
tetrachloroethene	C_2Cl_4	127-18-4	165.83	620.20 ^b	47.60 ^b	289.60 ^b	394.40 ^b	108.35	5.25755 ^p	480.03 ^p
tetraethyltin	C ₈ H ₂₀ Sn	597-64-8	234.95	655.92 ^b	25.75 ^b	429.28 ^b	456.25 ^b	163.66	6.45057 ^p	507.68 ^p
tetrafluoromethane	CF ₄	75-73-0	88.01	227.60 ^b	37.40 ^b	139.60 ^b	145.10 ^b	50.43	4.33323 ^q	244.02 ^q
tetrahydrofuran	C_4H_8O	109-99-9	72.11	540.10 ^b	51.90 ^b	224.00 ^b	338.00 ^b	82.78	4.89719 ^p	418.04 ^p
tetramethyltin	C ₄ H ₁₂ Sn	594-27-4	178.85	511.77 ^c	34.18 ^c	263.54 ^c	347.65 ^k	98.15	5.49090 ^p	396.11 ^p
tetrapropyltin	$C_{12}H_{28}Sn$	2176-98-9	291.06	759.88 ^c	20.66 ^c	595.01 ^c	536.35 ^k	230.44	7.16016 ^p	588.15 ^p
thenoyltrifluoroacetone	$C_8H_5F_3O_2S$	326-91-0	222.18	838.69 ^c	26.32 ^c	428.15 ^c	584.42 ^k	163.21	6.88052 ^p	649.15 ^p
toluene	C ₇ H ₈	108-88-3	92.14	591.80 ^b	41.00 ^b	316.00 ^b	383.80 ^b	118.72	5.45450 ^q	350.74 ^q
triarachidonin	$C_{63}H_{98}O_{6}$	23314-57-0	951.45	1499.66 ^c	6.51 ^c	2341.53 ^c	1135.95 ^k	968.46	10.74274 ^s	1160.74 ^p
trierucin	C ₆₉ H ₁₂₈ O ₆	2752-99-0	1053.75	1549.28 ^c	5.62 ^c	2832.93 ^c	1182.75 ^k	1182.46	11.44706 ^s	1199.14 ^p
trifluoroacetylacetone	$C_5H_5F_3O_2$	367-57-7	154.09	594.02 ^a	32.89 ^a	365.58 ^a	416.12 ^j	138.31	5.81789 ^p	459.77 ^p
trinervonin	C ₇₅ H ₁₄₀ O ₆	81913-24-8	1137.91	1601.10 ^c	5.20 ^c	3081.54 ^c	1229.05 ^k	1291.44	11.77257 ^s	1239.25 ^p
triolein	C57H104O6	122-32-7	885.43	1448.04 ^c	6.70 ^c	2335.72 ^c	1091.85 ^k	965.94	10.73385 ^s	1120.75 ^p
ubiquinone CoQ10	$C_{59}H_{90}O_4$	303-98-0	863.34	1522.50 ^c	7.09 ^c	2146.17 ^c	1142.15 ^k	883.95	10.43526 ^s	1178.42 ^p
vanillin	$C_8H_8O_3$	121-33-5	152.15	777.00 ^d	40.10 ^d	415.00 ^d	558.00 ^d	157.96	5.94398 ^p	601.40 ^p
vitamin K1	$C_{31}H_{48}O_2$	84-80-0	452.71	1329.54 ^e	8.58 ^e	1620.20 ^e	1099.02 ^j	658.37	9.50177 ^s	1029.06 ^p
vitamin K3	$C_{11}H_8O_2$	58-27-5	172.18	893.85 ^e	31.96 ^e	537.20 ^e	638.20 ^j	207.03	6.62868 ^p	691.84 ^p
xenon	Xe	7440-63-3	131.30	289.70 ^b	58.40 ^b	118.40 ^b	165.00 ^b	42.43	3.85754 ^p	224.23 ^p

^aAverage of the values by the Joback [13,49,50] and Somayajulu [51] methods. ^bTaken from Reid et al. [13]. ^c Estimated by the Klincewicz [13,52] method. ^dTaken from Yaws [149]. ^eAverage of the values by the Joback [13,49,50] and Wen-Qiang [55] methods. ^gTaken from Korea Thermophysical Properties Data Bank (KDB) [150]. ^hTaken from ASPEN database [151]. ⁱTaken from Table 4 of Liu and Ruckenstein [152]. ^jEstimated by the Joback [13,49,50] method. ^kTaken from ChemSpider [153]. ^lTaken from Lide [154]. ^mEstimated by the Tyn-Calus [13,48] expression. ^mTaken from Green and Perry [155]. ^oTaken from LookChem [156]. ^pEstimated by Eqs. (14) and (15) whenever $T_c/P_c < 100$. ^qTaken from Table 7 of Liu et al. [32]. ^rAverage of the values by the Joback [13,49,50] and Constantinou-Gani [56] methods. ^sEstimated by $\sigma_{LJ} = 0.809V_c^{1/3}$, since $T_c/P_c < 100$.

Table 3

Calculated results (note: an hyphen means is not applicable).

System		$D_{12,\text{Real}}$ (This work: Eqs. (8)–(17))			DHB (Eq. (27))			Zhu (Eqs. (21)–(26))	WC (Eq. (18))	LR (Eq. (19))	LT (Eq. (20))
Solvent (1)	Solute (2)	NDP	$E_{\rm D} imes 10^9$ (erg/mol)	AARD	$B \times 10^7$ (mol/cm s K	$V_{\rm D} ({\rm cm^3/mol})^{1/2})$	AARD	AARD	AARD	AARD	AARD
					Supercritic	al systems					
2.3-dimethylbutane	benzene	11	11.6929	1.34	0.9661	70.08	1.56	7.93	75.95	95.80	44.77
,	naphthalene	9	13.0408	1.40	0.7527	66.74	1.75	2.41	65.82	82.61	60.31
	nhenanthrene	11	12 3225	1 91	0 5871	54.23	1 53	5.23	61 35	78.84	72 56
	toluene	10	11.9749	1.30	0.9458	77.91	1.79	4.82	72.49	90.48	51.73
carbon dioxide	1 1 1 5 5 5 hevefluoroacetulacetone	15	11 6230	436	1 1/60	11.05	436	23.30	18.05	30.26	32.24
carbon dioxide	1.1/ dimethylferrocone	69	10.6206	2.20	1.1400	11.05	2.67	20.12	10.55	21.02	18 70
	1.2 dichlorobonzono	15	0.0441	1 75	1.2000	16.61	2.07	10.51	6.80	22.17	17.55
	1.2 dicthylbonzono	15	9.0441	1.75	1.3427	10.01	2.07	11.79	6.10	14.42	17.33
	1,2-diethyddenzene	15	0.4007	1.99	1.5005	15.00	2.01	12.22	0.19	14.45	17.20
	1,3,5-trimethydenzene	24	10.0258	4.60	1.2531	11.01	4.29	13.33	7.27	23.55	19.18
	1,3-divinyibenzene	15	7.7970	1.20	1.5589	18.35	1.39	12.10	3.74	16.70	16.58
	1,4-diethylbenzene	15	8.4584	2.66	1.3865	15./2	4.06	11.17	5.65	15.36	18.05
	15-crown-5	29	6.9828	5.84	0.9986	1.19	5.98	21.17	7.85	21.59	15.09
	1-naphthol	11	5.8650	2.56	2.1460	24.53	0.88	9.22	5.77	9.17	4.60
	1-phenyldodecane	15	11.1646	2.43	0.9485	17.21	3.14	26.54	6.96	27.70	47.18
	1-phenylethanol	15	12.1262	1.70	1.3428	14.22	3.15	11.15	10.31	28.54	25.33
	1-phenylhexane	15	8.6859	2.03	1.2534	16.08	2.71	14.59	7.52	16.20	23.78
	1-phenyloctane	15	8.0059	2.72	1.1894	16.53	3.65	20.79	8.65	16.88	27.35
	1-propanol	17	9.3807	4.61	1.3448	-10.04	3.00	8.71	15.43	26.25	4.49
	2,2,4,4-tetramethyl-3-pentanone	9	-1.2255	2.90	3.0352	29.08	0.76	24.62	27.01	14.50	20.80
	2,3-dimethylaniline	15	12.2897	2.19	1.2259	13.77	2.38	12.08	16.04	35.59	33.42
	2,3-dimethylnaphthalene	3	8.0571	1.18	1.5361	21.43	1.08	10.35	3.66	16.99	18.98
	2.4-dimethyl-3-pentanone	8	12.2269	3.28	1.7583	25.46	2.33	27.67	29.97	47.89	28.35
	2.4-dimethylphenol	15	12 5119	2.87	1 1649	8 3 3	3 63	11 95	9.42	27 40	24 55
	2.6-dimethylaniline	15	12 7114	3 12	1 1330	8.66	3 34	11.78	11.47	30.25	28.06
	2.6-dimethylnanhthalene	6	8 6630	4 33	1 1736	10.78	4 24	15 38	7.15	17.98	18.68
	2.5 dimethylnaphthalene	6	7 7956	4 50	1 5069	19.63	4 50	11 91	6.91	13.01	16.04
	2-bromoanisole	15	11 4509	2.26	1,2561	12.05	3 66	10.23	16.52	35.12	30.69
	2-butanone	38	6 2801	1.96	2.0672	16.01	2.60	0.83	5 3 8	7 75	1 85
	2 othyltoluono	15	0.2051 9.4041	2 20	2.0072	14.72	2.00	0.20	9.50 9.05	0.76	10.52
	2-ethyltoluelle	15	10,0007	3.30	1.4172	14.72	3.70	9.50	10.95	25.01	10.55
	2-huoroanisoie	15	10.9097	1.71	1.3944	14.19	2.58	9.93	18.48	35.01	20.00
	2-neptanone	11	0.0071	4.68	3.4792	32.29	1.83	22.02	30.11	17.77	23.07
	2-methylanisole	15	10.5104	2.18	1.3055	12.12	2.79	9.69	9.67	26.90	22.89
	2-naphthol	16	4.8419	4.19	1.9948	21.27	1.73	6.52	7.84	7.67	10.71
	2-nitroanisole	15	11.2230	1.73	1.2984	15./5	2.39	10.88	11.4/	31.20	30.58
	2-nonanone	10	-2.5576	3.86	2.8331	29.00	2.35	25.05	35.76	21.43	25.20
	2-pentanone	23	6.2588	1.98	1.7185	12.62	2.52	7.78	4.45	12.64	2.27
	2-phenyl-1-propanol	15	13.1297	1.70	1.2825	15.24	2.64	15.83	9.72	30.05	30.05
	2-phenylethanol	15	11.8008	1.90	1.3652	15.18	3.03	10.31	12.10	30.39	26.79
	2-phenylethyl acetate	15	12.3946	2.52	1.1080	13.22	3.06	13.89	8.63	32.02	36.37
	2-propanol	18	7.0638	3.70	1.5735	-1.37	2.21	7.42	9.57	19.89	7.64
	3-ethyltoluene	15	8.1446	3.59	1.4175	14.91	4.00	9.82	11.68	7.07	9.09
	3-nitrotoluene	15	9.9120	2.56	1.3849	14.90	3.96	9.58	4.00	17.91	18.41
	3-pentanone	39	6.1599	1.62	2.0419	19.27	2.03	9.04	9.48	4.37	4.31
	3-phenyl-1-propanol	15	11.8564	1.85	1.5158	20.64	2.28	9.50	6.21	26.32	27.20
	3-phenylpropyl acetate	15	12.2121	2,99	1.0565	12.96	3.37	14.86	7.12	31.18	38.05
	4-ethyltoluene	15	9.0303	2.33	1 4780	17.40	3.07	8.89	7.46	11 41	12 72
	4-hentanone	9	_3 1193	2.01	3 1752	27.31	0.47	29.62	36.53	25.01	29.68
	4-methylanisole	15	12 2670	2.12	1 3/72	16 11	2 21	12.02	17 52	25.01	23.00
		10	12.20/0	2.00 1 00	2 0575	10.11	J.21 1 10	12.10	2/21	10.22	20.80
	5-nondhone E tart butul mariana	12	-1.7755	4.02	3.0373	32.13	2.00	23.03 12.60	0 1E	13.33	20.00
	S-tert-bulyi-m-xylene	51	ð.2774 2.1201	1./4	1.0033	22.88	3.02	13.00	ð.45	14.08	19.41
	6-undecanone	13	-2.1381	4.55	2.8101	31.76	2.53	27.76	38.53	21.79	20.74

Table 3	(Continue	ed)
---------	-----------	-----

System		$D_{12,Real}$	(This work: Eqs.	(8)–(17))	DHB (Eq. (27))			Zhu (Eqs. (21)–(26))	WC (Eq. (18))	LR (Eq. (19))	LT (Eq. (20))
Solvent (1)	Solute (2)	NDP	$E_{\rm D} imes 10^9$ (erg/mol)	AARD	$B \times 10^7$ (mol/cm s K ^{1/2})	V _D (cm ³ /mol)	AARD	AARD	AARD	AARD	AARD
	acetone	178	7.6727	4.34	2.1316	13.74	5.05	11.71	5.64	12.59	10.29
	acridine	6	10.0396	2.64	1.2634	16.55	2.85	15.47	4.93	20.98	27.22
	adamantanone	8	-1.7883	2.59	1.4379	-2.78	2.59	29.47	18.17	7.13	14.95
	α-linolenic acid	56	8.9849	3.53	0.9745	15.74	2.79	26.31	14.24	18.39	32.29
	allylbenzene	15	9.2397	3.35	1.3060	10.81	3.34	10.60	5.36	17.71	16.32
	aniline	15	15.1453	3.04	1.1791	8.61	2.46	21.45	33.34	48.89	33.65
	anisole	15	10.3116	1.99	1.4822	13.90	2.97	7.70	7.33	22.66	16.31
	anthracene	22	5.3986	2.71	1.6433	22.35	1.75	20.69	10.38	9.98	14.67
	α-pinene	15	7.4629	3.67	1.7055	21.73	3.83	9.38	7.00	12.54	9.28
	arachidonic acid (AA)	75	7.3558	5.03	0.8591	13.44	2.51	49.72	9.70	25.84	41.11
	AA ethyl ester	48	6.6406	0.58	1.1233	23.26	1.17	37.41	15.16	19.76	30.43
	α-tocopherol	82	6.8389	2.86	0.9419	18.16	2.21	64.17	31.55	4.98	27.17
	β-carotene	90	7.9366	3.75	0.6748	16.79	2.26	144.58	14.88	33.25	66.19
	behenic acid ethyl ester	17	5.3588	1.21	1.2263	27.32	0.86	65.88	21.34	14.66	31.30
	benzene	222	5.9164	7.57	1.4921	-1.03	7.59	11.//	9.14	11.09	9.70
	Denzoic acid	29	8.9295	5.81	1.8170	21.69	6.34	8.54	9.27	23.35	14.24
	benzyl acetate	15	10.4248	2.11	1.3600	16.99	3.02	9.82	7.79	27.69	28.09
	binbonyl	15	11.1435	2.67	1.0795	9.08	3.70	12.03	0.19	27.48	30.46
		24	8.4050	3.58	1.3337	13.85	3.39	10.14	10.13	10.78	10.04 5.09
	p-pillelle bromobonzono	15	0.0042 10.0276	3.51	1.3710	9.22	4.97	0.08	7.91	7.50	0.00 12.52
	buturic acid ethyl ester	15	7 2422	4.02	1.4575	12.25	4.50	3.00	/.01	21.50	6.58
	coffeine	21	14 0214	7.74	0.7164	-17.53	1.85	37.00	22.62	17.40	31 / 8
	capric acid ethyl ester	16	6 1850	2.82	1 7729	29.09	4.87	10.56	13.46	11 25	16 75
	caprylic acid ethyl ester	16	6 9489	2.02	1.7723	26.83	1.44	7 39	10.23	12.15	14 33
	chlorobenzene	15	10 5647	3.84	1 4476	11 52	3.61	8 91	8.22	21.67	12 35
	chrysene	4	4 0191	1.89	1 8594	27.80	2.61	43.90	1616	6.63	18.17
	citral	15	6 6552	2.94	1 3860	16 29	4 31	10.55	8.63	13 20	11 19
	cobalt(III) acetylacetonate	38	12.8945	1.49	1.0715	17.87	2.13	125.95	11.53	40.06	47.22
	copper(II) trifluoroacetylacetonate	12	17.1980	4.48	1.2764	22.66	5.04	72.60	37.09	62.37	52.90
	cycloheptanone	8	8.7825	2.90	1.8569	23.71	1.85	8.58	24.01	39.72	18.83
	cyclononanone	8	9.0682	3.10	1.7583	25.46	2.33	10.68	17.62	36.52	22.69
	cyclopentanone	8	11.3711	1.30	1.8382	18.40	1.03	13.18	20.31	33.53	9.61
	dibenzo-24-crown-8	28	6.9846	1.72	1.0944	24.24	1.93	99.02	12.73	22.77	51.41
	dibenzyl ether	15	10.8917	2.62	1.0702	14.04	3.22	15.81	5.32	30.14	38.16
	diethyl ether	15	10.4661	14.48	1.0474	-26.59	4.98	32.29	11.80	22.80	9.09
	diisopropyl ether	15	8.5982	10.04	1.0782	-16.29	7.87	29.92	7.14	12.53	11.51
	diolein	9	5.7684	4.81	0.6769	14.02	1.61	77.97	23.69	22.33	48.58
	D-limonene	15	6.9199	3.29	1.3735	12.04	4.06	10.49	9.32	10.54	7.22
	docosahexaenoic acid (DHA)	63	8.1947	2.87	0.9162	18.60	1.63	58.53	7.28	30.05	48.35
	DHA ethyl ester	65	6.4044	1.10	1.0708	22.09	1.45	48.46	16.73	18.88	31.39
	DHA methyl ester	17	6.0194	0.86	1.2079	25.70	0.92	52.38	16.76	17.74	32.12
	eicosapentaenoic acid (EPA)	55	7.6249	3.48	0.9184	16.15	1.79	46.01	7.79	27.28	41.67
	EPA ethyl ester	48	6.5200	0.68	1.1626	24.23	1.06	36.48	14.98	19.58	29.92
	EPA methyl ester	17	6.6928	1.40	1.2964	27.43	0.49	37.76	17.37	16.49	30.48
	ethanol	24	8.0520	2.98	1.9621	6.43	3.21	12.41	11.29	19.52	9.68
	ethyl acetate	15	10.4849	17.12	0.8254	-49.61	6.71	36.32	12.75	24.58	8.21
	ethyl benzoate	15	7.3630	4.55	1.8993	27.23	2.94	12.20	3.88	22.01	24.86
	ethylbenzene	15	7.1995	1.83	1.8248	18.85	2.28	9.47	7.44	7.97	4.84
	eugenol	15	12.5981	2.90	1.3885	20.62	3.58	10.54	17.29	39.19	39.69
	terrocene	98	5.4911	3.40	1.2424	6.91	6.35	21.24	17.32	33.15	18.19
	Iluorobenzene	15	10.8771	3.61	1.7808	17.76	4.22	10.40	11.04	23.76	10.83
	γ -linolenic acid	142	7.5649	5.23	0.8364	9.15	2.15	33.37	7.79	26.40	36.36
	γ-linolenic acid ethyl ester	41	9.9816	6.34	0.8603	6.15	5.10	43.72	6.92	37.84	23.99

System	/stem		$D_{12,\text{Real}}$ (This work: Eqs. (8)–(17))					Zhu (Eqs. (21)–(26))	WC (Eq. (18))	LR (Eq. (19))	LT (Eq. (20))
Solvent (1)	Solute (2)	NDP	$E_{\rm D} imes 10^9$ (erg/mol)	AARD	$\frac{B \times 10^7}{(\text{mol/cm s } \text{K}^{1/2})}$	V _D (cm ³ /mol)	AARD	AARD	AARD	AARD	AARD
	γ-linolenic acid methyl ester	52	7.4397	6.33	0.8588	7.53	7.58	47.11	13.41	19.17	19.94
	hexachlorobenzene	14	6.7978	8.55	0.8331	-12.47	4.18	25.04	10.99	20.34	14.18
	iodobenzene	15	11.9409	3.14	1.2680	11.18	2.72	11.69	12.21	28.89	22.56
	<i>i</i> -propylbenzene	15	7.1693	2.16	1.6274	17.00	2.00	10.94	9.27	7.60	7.33
	L-carvone	23	8.4989	3.18	1.6268	23.50	2.57	11.23	3.95	21.17	24.19
	linalool	15	8.0284	3.27	1.3508	14.09	4.02	11.26	7.24	13.86	10.49
	linoleic acid	71	9.4472	5.66	0.8351	9.74	3.73	30.68	9.63	25.29	38.00
	linoleic acid methyl ester	21	6.3307	2.23	1.0645	19.77	1.66	56.92	15.74	16.35	37.24
	L-menthone	23	7.5505	3.56	1.7676	25.22	2.81	11.73	5.18	15.93	19.79
	methanol	10	8.0885	3.97	2.1980	1.60	2.14	20.87	16.79	23.92	18.17
	monoolein	11	9.9118	3.58	0.8199	13.88	1.22	24.17	8.71	29.20	43.52
	myristic acid ethyl ester	16	5.8944	2.42	1.4546	27.11	2.14	24.88	15.97	13.35	23.65
	myristoleic acid	42	9.3432	5.62	0.8465	4.77	2.66	25.97	5.68	32.51	31.43
	myristoleic acid methyl ester	/9	11.0829	8.88	0.7247	-15.38	10.07	68.29	10.41	29.12	14.33
	N-(4-methoxybenzylidene)-4-n-butylaniline	5	-0.5082	1.26	2.1419	29.00	0.33	42.04	17.85	1.84	3./2
	naphthalene	83	7.9398	8.40	1.4140	11.79	8.29	18.59	10.81	14.02	10.14
	n-butyibenzene	15	8.4175	1.94	1.4109	15.95	2.97	11.18	0.29	13.93	10.57
	n-decane	5	-1.9772	4.20	5.6445 4.2507	20.02	2.00	27.54	30.31 40.97	23.30	21.11
	n-uouecane n hontano	5	-2.4430	2 70	2 0/21	25.67	2.99	20.00	40.87	16.05	19.39
		5	2 6677	3.79	3 0838	35.55	2.00	20.99	20.91	10.05	16.71
	nitrohenzene	15	10 2808	2.18	1 2075	979	2.05	0.00	8 70	24.87	10.44
	n-nonane	5	_1 1931	4 42	4 0604	37.02	1 43	29.33	36.45	24.07	21 11
	<i>n</i> -octane	5	-0.1518	4 51	4 1527	37.02	1.15	25.60	33 41	19.86	20.36
	<i>n</i> -pentane	5	4 5108	4 00	4 0586	35.82	1.67	9.12	13.23	2.52	12.10
	<i>n</i> -pentylbenzene	31	8.3397	1.94	1.6168	21.86	3.95	12.96	8.27	13.58	17.27
	<i>n</i> -propylbenzene	34	9.0653	9.49	0.8647	-17.49	5.03	25.18	12.75	20.46	8.67
	<i>n</i> -tetradecane	5	-2.4383	7.65	4.3703	41.99	3.32	43.05	38.78	19.50	12.24
	<i>n</i> -undecane	5	-2.8335	5.24	4.1553	38.28	1.85	35.87	40.94	25.46	21.81
	oleic acid	19	9.5105	5.85	0.8088	9.94	2.14	37.36	10.03	26.11	40.02
	oleic acid ethyl ester	5	11.0841	7.85	0.5458	-23.03	0.97	53.72	5.72	38.56	29.14
	oleic acid methyl ester	19	12.2814	8.17	0.5031	-34.23	1.93	65.15	6.50	42.07	27.79
	palladium(II) acetylacetonate	125	13.24401	2.36	1.2460	17.11	4.65	91.51	21.93	44.15	38.05
	palmitic acid ethyl ester	17	6.4017	1.27	1.3142	26.47	0.61	30.82	15.14	16.97	28.90
	<i>p</i> -dichlorobenzene	13	9.6489	3.59	1.5067	16.27	3.72	8.76	10.61	27.05	17.02
	phenanthrene	19	3.9920	6.18	1.3448	12.04	5.03	23.94	13.96	8.79	6.02
	phenol	109	9.6578	3.01	1.3641	2.62	4.61	8.02	21.47	33.35	10.35
	phenylacetic acid	16	8.8548	1.90	1.7122	22.71	1.80	6.41	4.25	22.72	15.84
	phenylacetylene	15	10.4016	1.13	1.6377	17.26	1.58	7.61	7.80	22.91	16.04
	phenylmethanol	15	10.5980	1.61	1.5257	16.57	2.54	8.05	13.91	30.10	22.63
	pyrene	18	5.9952	2.50	1.5497	23.47	1.84	26.23	9.18	13.72	20.83
	squalene	5	7.0990	4.18	1.9069	36.68	1.87	50.04	13.56	20.60	38.21
	stearic acid ethyl ester	17	6.4240	1.32	1.2474	26.37	1.03	41.53	16.25	17.77	31.65
	styrene	15	10.6398	4.00	1.6454	18.93	4.39	8.35	5.38	20.35	14.72
	tert-butylbenzene	15	8.2675	3./3	1.8018	23.59	3.62	9.25	7.92	10.83	14.03
	tetranyorofuran	15	10.1526	12.53	1.18/1	-22.18	4.99	22.16	15.96	27.07	10.90
	thehovitriiluoroacetone	15	9.9795	3.61	1.1938	18.09	3.05	13.70	30.20	53.55 11.94	47.64
		35 27	7.2441	4.06	1.6490	11.46	4.14	8.44 1.40.22	5.32	11.84	4.40
		27	1.7442	8.26	0.4912	0.85	0.82	149.23	17.49	34.89	/0.26
	unerucin trifluoroacetulacetone	101	9.6030	9.64	0.3/31	-2./3	2.95	140.02	13.5/	48.33	82.31 11.17
	trinoruonin	10	7.9015 9.6611	1.83	1./229	19.37	2.18	0.30	5./4 16.62	19.21	11.17
	trioloin	50 10	0.0011	0.07	0.5902	2.//	2.80	100.90	10.02	43,30	03.21 66.50
	ubiguinono CoO10	80	9.6500	7.04 5.04	0.44442	-1.30	1.20	1/1 52	12.00	27.09	71 55
		00	0.00/1	5.04	0.0220	10.09	4.09	141.JJ	13.30	51.50	/1.55

Table 3 (Continued)

Table 3	(Continue	d)
---------	-----------	----

Salver (1) Sular (2) NP F ₁ (1) ² (regrams) K ₁ (m ²) ² (regrams) K ₁ (regrams) K ₁ (regrams) <th>System</th> <th></th> <th>$D_{12,Real}$</th> <th>(This work: Eqs</th> <th>.(8)–(17))</th> <th>DHB (Eq. (27))</th> <th></th> <th></th> <th>Zhu (Eqs. (21)–(26))</th> <th>WC (Eq. (18))</th> <th>LR (Eq. (19))</th> <th>LT (Eq. (20))</th>	System		$D_{12,Real}$	(This work: Eqs	.(8)–(17))	DHB (Eq. (27))			Zhu (Eqs. (21)–(26))	WC (Eq. (18))	LR (Eq. (19))	LT (Eq. (20))
Image: Section of the section of th	Solvent (1)	Solute (2)	NDP	$E_{\rm D} imes 10^9$ (erg/mol)	AARD	$B \times 10^7$ (mol/cm s K ^{1/2})	V _D (cm ³ /mol)	AARD	AARD	AARD	AARD	AARD
intrain K, itamin K, 		vanillin	15	11.0112	1.87	1.5345	21.13	2.03	10.92	12.64	32.26	24.63
vhamik K, 20 6.2302 6.2302 6.11 1.807 6.84 2.70 2.421 0.77 12.20 11.31 chlorotfilhoromethan arctone 10 1.45514 1.1.17 0.4905 1.532 2.26 3.521 2.237 2.53 2.131 cethane 1 -corcone 6 2.103 2.200 1.225 1.40 1.827 4.78 5.403 5.413 salfur hexaflooride 1 0.7080 0.6677 1.46 4.059 1.417 3.036 47.23 3.201 0.514 acrobit errathibitide 6 1.5944 4.58 0.6677 1.46 1.033 3.279 3.210 5.514 acrobit errathibitide 6 8.208 0.677 1.640 1.532 2.61 1.730 1.46488 8.132 1.051 1.137 3.208 6.17 1.157 1.016 1.137 3.208 6.17 1.157 1.016 1.137 3.208 1.137 3.208 <t< td=""><td></td><td>vitamin K₁</td><td>16</td><td>3.4907</td><td>4.00</td><td>0.8940</td><td>16.80</td><td>2.22</td><td>106.89</td><td>27.19</td><td>9.60</td><td>30.62</td></t<>		vitamin K ₁	16	3.4907	4.00	0.8940	16.80	2.22	106.89	27.19	9.60	30.62
chlowotrifluxomethane activate 10 12,412 6,13 0,906 1938 2,23 5,85 2,237 2,73 2,73 2,73 2,73 2,73 2,73 3,13 eihane 1.etterer 1.etterer 0 1,8331 5,80 1,205 1,275 1,40 1,837 1,73 3,737 5,15 sulfar hexallowide 0 7,733 9,737 3,733 3,733 3,733 4,738 4,749 </td <td></td> <td>vitamin K3</td> <td>20</td> <td>6.2302</td> <td>4.51</td> <td>1.1807</td> <td>8.84</td> <td>2.70</td> <td>24.21</td> <td>9.77</td> <td>12.90</td> <td>11.31</td>		vitamin K3	20	6.2302	4.51	1.1807	8.84	2.70	24.21	9.77	12.90	11.31
p-xylene814.55111.70.4851-13.22.2838.2123.7721.9433.39cthane11-extensecree66.19332.301.205012.351.6011.85717.6137.3751.51sulfur hexafluoride109.04009.0500.5371.8.964.591.417130.6647.3339.3947.8040.15benzoic acid68.139349.470.66771.440.5871.7.3014.89881.32165.41carbon terxshloride54.22800.6311.188767.425.2211.0777.1930.03111.97p-xylene15.740.7811.9731.2417.757.32.884.99934.37totaure15.7645.221.1077.71930.05111.97p-xylene15.7441.042150.500.6436.658.706.37176.33totaure11.25-trimethylmenze418.3501.571.13614.4531.646.7314.4117.33totaure11.25-trimethylmenze418.3501.571.04215.030.6436.658.706.37176.33chylenecre418.3501.571.04215.030.6436.2731.641.45.71314.8417.33totaure11.25-trimethylenezre418.3501.641.0451.3352.011.581.6	chlorotrifluoromethane	acetone	10	12.4127	6.13	0.9096	19.58	2.56	5.85	23.27	25.58	23.11
ethane 1. excess 6 5.133 5.20 1.205 1.2.5 1.40 1.837 1.7.6 1.7.7.5 salfar bexafuorde 1.3.5-trimechybenzene 9 7.8833 9.07 0.6677 1.4.4 1.0.5 7.7.33 33.93 4.7.0 4.0.9 benzene 9 7.8833 9.07 0.6677 1.4.4 1.0.5 7.7.33 33.93 4.7.0 4.0.9 benzene 9 7.8833 9.07 0.0671 1.4.4 1.0.58 7.7.3 3.9.39 4.7.0 4.0.9 polythelene 2.2 2.2 0.010 1.9731 1.7.37 1.7.07 7.7.19 3.0.5 1.1.9.7 2.4-timethylpenzene 1 1.8360 2.7.2 1.7.03 1.0.3		p-xylene	8	14.5514	11.17	0.4851	-13.32	2.28	38.21	23.77	21.94	31.30
1.tetradecenie 9 2.8288 2.30 1.5925 38.24 1.61 18.87 17.61 37.37 5.15 salfur hexalluoride 10 9.0490 9.65 0.5777 18.96 4.59 14.17 33.06 45.23 2.111 automatice 6 1.2837 0.6679 1.44 10.31 17.37 18.90 4.53 13.13 19.90 10.91 automatice 5 4.229 6.61 0.6679 11.43 17.75 2.23 4.099 14.137 p-sylence 52 6.192 7.19 0.05781 17.41 17.75 2.23 4.099 14.33 p-sylence 52 6.192 7.19 0.052 1.14 17.75 2.23 7.77 4.77 14.33 p-sylence 4 14.256 1.57 1.142 14.230 1.64 1.53 5.07 6.41 14.73 p-sylence 4 16.46077 2.39 0.9929 14.469	ethane	1-octene	6	6.1933	5.90	1.2050	12.75	1.40	11.82	4.78	54.05	4.19
sufur hexaluoride 1.3.5-trimethylpenzene 19 9.0490 9.655 0.5777 18.66 4.59 1.17 31.06 4.523 32.11 benzoic acid 6 11.344 4.58 0.0561 1.047 1.648 1.733 19.99 81.32 166.45 arbon translande 6 1.1344 4.58 0.0561 1.047 1.74 1.733 1.999 82.10 55.11 p-sylenc 52 6.122 7.19 0.5781 1.973 1.24 7.75 2.32 4.097 2.35 2.2.4-trimethylpentane 4 1.8256 1.7 1.132 1.933 1.513 5.030 5.637 1.633 1.447 ctylebrizene 4 1.8256 1.7 1.132 1.933 1.933 1.933 1.510 1.933 1.934 1.640 1.934 1.934 1.934 1.934 1.934 1.934 1.934 1.934 1.934 1.934 1.934 1.934 1.934 1.934		1-tetradecene	9	2.8288	2.30	1.5925	38.24	1.61	18.87	17.61	37.37	5.15
bernzene 9 7.8833 9.07 0.6679 1.44 10.58 7.33 33.39 47.80 40.59 bernzene 6 1.8240 0.6661 40.677 5.26 1.733 37.99 32.10 50.14 naphthalene 52 6.1192 7.11 0.5781 17.42 5.22 11.77 77.19 30.05 13.187 p-ayiene 52 6.1192 7.11 0.5781 1.735 12.43 7.72 23.28 40.95 34.57 colume 1 1.8540 1.524 1.044 1.335 1.61.2 26.78 45.77 1.1642 1.51.2 1.51.33 1.61.2 26.78 45.72 57.73 116.69 31.73 32.51 1.61.2 26.78 45.72 57.73 114.07 14.42 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2 1.51.2	sulfur hexafluoride	1,3,5-trimethylbenzene	10	9.0490	9.65	0.5377	18.96	4.59	14.17	33.06	45.23	32.11
henzoic acid 6 11.9344 4.58 0.0601 40.78 2.61 17.30 149.89 81.32 156.45 arbot tratchioride 5 4.2289 6.03 1.1687 67.42 5.22 11.07 77.19 30.05 111.37 p.sylene 52 6.1192 7.19 0.3781 19.73 7.21 37.76 49.77 2.2.4-trimethylpentare 4 18.356 1.77 1.13.8 1.66.97 6.53.7 1.16.87 ethylbenzene 4 18.356 1.77 1.13.8 1.66.97 5.57.3 1.66.97 ethylbenzene 4 15.53 0.0922 147.66 2.24 25.41 51.64 57.35 148.74 p.sylene 4 15.633 0.618 0.5416 9.823 5.36 21.9.79 2.845 37.44 191.46 cylobexane 1.1-dimethylferrocene 5 13.054 6.63 0.5416 9.823 5.36 21.9.79 2.845 37.44 19		benzene	9	7.8833	9.07	0.6679	1.44	10.58	7.33	39.39	47.80	40.59
carbon tetrachloride 6 8.8200 2.57 0.6877 53.40 5.18 13.73 37.99 32.10 50.11 p-xylene 52 6.1192 7.19 0.5781 17.93 12.41 7.75 23.28 40.99 34.37 2.2.4-trimethylpentane 1 8.560 2.74 10.142 15.050 0.41 25.03 15.05 17.03 176.33 1.3.5-trimethylpentane 4 16.357 1.132 145.05 1.041 25.03 45.07 67.37 176.33 ocylenc 4 16.497 2.39 0.992.9 147.66 2.24 25.4 51.64 67.33 107.33 ocylenc 4 16.4907 2.39 0.992.9 147.66 2.34 2.25.4 51.64 67.33 107.33 ocylenc 4 16.4307 2.39 0.992.9 14.496 1.34 7.09 51.81 40.13 12.447 ocylenc 4 16.4307 2.29 0.992.		benzoic acid	6	11.9344	4.58	0.6061	40.87	2.61	17.30	149.89	81.32	165.45
naphthaleme 5 4.228 6.03 1.1687 67.2 5.22 11.07 77.19 30.05 11.197 2.2.4-trimethylpentane 5 8.764 10.84 0.5288 -18.56 9.73 7.21 37.76 49.77 35.50 2.2.4-trimethylpentane 4 18.3560 2.74 1.133 145.53 1.66 26.78 48.72 57.33 116.69 ehtylberzene 4 16.4407 2.39 0.9929 147.66 2.24 23.54 51.64 57.33 61.41 157.33 149.74 10.44 10.50 1.44 17.09 31.81 40.13 12.44 77.35 149.74 10.44 10.50 1.44 17.09 31.81 40.13 12.44 77.55 149.75 12.43 77.41 10.42 13.3 50.09 12.43 77.45 2.44 23.54 13.83 7.44 13.3 13.47 13.5 13.43 17.09 31.83 7.24 33.35 50.99 12.3		carbon tetrachloride	6	8.8200	2.57	0.6877	35.40	5.18	13.73	37.99	32.10	50.14
p-xylene 52 6.19 7.19 0.5781 19.73 12.41 7.75 22.28 40.99 34.37 2.2.4-trimethylpentare 1.3.5-trimethylbenzere 4 18.3560 2.74 10.142 150.50 0.64 36.05 55.70 63.87 17.633 ethylbenzere 4 11.23 1.55 0.0035 1144.09 1.33 35.01 55.63 61.41 157.33 ethylbenzere 4 13.557 0.238 0.3282 147.06 2.244 55.63 61.41 157.33 eydene 4 13.557 0.238 0.5282 147.06 2.244 25.63 56.35 61.41 157.33 cyclohexare 1.1-dimethylperzere 4 13.557 1.184 11.194 10.54 2.422 3.536 219.79 2.845 37.44 191.46 cyclohexare 1.1-dimethylperzere 5 3.4685 8.452 10.134 3.04 66.34 2.257 7.12 9.202 4.14.01		naphthalene	5	4.2289	6.03	1.1687	67.42	5.52	11.07	77.19	30.05	111.97
toluene 11 8.7644 10.84 0.528 -18.56 9.73 7.21 37.76 4.9.77 35.50 2.2.4-trimethylpentare 1.3.5-trimethylpenzene 4 14.356 1.57 1.1336 14553 1.61 26.78 48.72 57.73 116.69 benzene 4 14.356 1.57 1.1336 144.09 1.33 35.01 55.63 61.41 157.33 140.97 o-xylene 4 16.4607 2.39 0.9929 147.66 2.24 2.954 51.64 57.33 140.74 o-xylene 4 14.565 1.61 1.0099 144.99 1.58 2.17.09 35.18 40.13 124.47 cylohexare 1.1'-dimethylferrocene 5 1.30504 66.3 0.5416 2.48 0.5316 2.16.13 2.119.79 25.51 3.74 191.44 atgon 6 0.4205 6.89 2.4350 1.01.34 2.44 46.30 2.219.0 13.13 1.11.91		<i>p</i> -xylene	52	6.1192	7.19	0.5781	19.73	12.41	7.75	23.28	40.99	34.37
Liquid system Liquid system 2.2.4-trimethylpentam 18.3560 2.7 1.0142 150.50 0.84 36.05 58.70 57.73 116.69 ethylbenzene 4 11.2713 1.35 0.0035 144.09 1.33 53.01 55.63 61.41 157.33 147.03 vylene 4 11.2713 1.35 0.0035 144.09 1.33 53.01 55.63 61.41 157.33 147.04 ulene 4 11.53.19 2.24 0.795.4 1.009 149.9 1.33 53.01 55.63 61.41 177.33 100.00 124.97 cylohexane 1.1-dimethylferrocene 5 13.0504 6.63 0.5416 98.23 5.36 219.79 2.845 37.44 191.46 1.3-5-trimethylbenzene 12 4.222 1.178 1.1194 1.01.44 63.31 2.21.2 4.13 1.40.1 benzene 5 0.204.1 0.21.7 4.02.1 1.21.7 1.10.2		toluene	11	8.7644	10.84	0.5288	-18.56	9.73	7.21	37.76	49.77	35.50
2.2.4-trimethylpentane 1.3.5-trimethylpentane 4 18.360 2.74 1.0142 150.50 0.84 36.05 58.70 63.87 176.33 entylpenzene 4 17.2713 1.55 0.8035 144.09 1.33 35.01 55.63 61.41 157.33 p-sylene 4 15.3519 2.34 0.7954 140.69 1.34 17.09 35.18 40.13 124.47 otionene 4 13.5319 2.34 0.7954 140.69 1.34 17.09 35.18 40.13 124.47 otionene 4 14.5633 1.61 1.0099 14.499 1.58 2.377 43.50 191.46 1.3.5 trimethylpenzene 12 4.2229 11.78 1.1194 101.54 2.42 25.65 2.615 2.459 7.44 140.10 benzene 12 3.4685 8.89 1.4520 101.34 3.04 66.34 25.76 2.520 61.82 cotion tetrachylene 5 0.8264 7.55 2.0214 191.75 5.24 142.91						Liquid sys	stems					
benzene 4 14.3556 1.57 1.1356 145.53 1.61 26.78 44.72 57.73 11669 o-xylene 4 16.4007 2.39 0.9929 147.66 2.24 2254 51.64 57.35 149.74 o-xylene 4 15.531 2.84 0.7954 14069 1.24 2254 51.64 57.35 149.74 outene 4 14.5635 1.61 1.009 144.99 1.8 23.72 43.53 50.09 123.97 cytohexane 1,1-dimethylenzone 5 13.0504 6.63 0.5416 98.23 5.36 219.79 28.45 37.44 191.46 argon 6 -0.4301 6.03 2.6698 96.95 2.44 43.00 21.29 4.19 14.01 argon 6 -0.4301 6.63 2.0214 1000 2.40 106.17 25.77 7.12 190.20 carbon terrachyloride 6 12.2874 5.98<	2,2,4-trimethylpentane	1,3,5-trimethylbenzene	4	18.3560	2.74	1.0142	150.50	0.84	36.05	58.70	63.87	176.33
ethybenzene 4 17,2713 1.55 0.8035 144.09 1.33 35.01 55.63 61.41 157.33 p-xylene 4 163.07 2.39 0.9929 147.66 2.24 2.254 51.64 57.35 149.74 p-xylene 4 145.635 16.0 1.099 144.99 1.58 23.72 43.53 50.09 124.97 cylobexane 1.1 -dimethylferrocene 5 13.004 663 0.5416 98.23 53.6 219.79 28.45 37.44 191.46 1.3 - trimethylbenzene 12 4.2229 11.78 1.114 101.54 2.44 56.15 26.48 7.404 argon 6 -0.4301 603 0.5416 98.23 2.36 101.71 25.57 17.12 190.2 ethylene 5 0.8264 7.55 2.0214 100.00 2.40 106.17 25.57 17.12 190.2 ethae 5 0.8264 7.55		benzene	4	14.3556	1.57	1.1336	145.53	1.61	26.78	48.72	57.73	116.69
e-xylene 4 16.4807 2.39 0.929 147.66 2.24 29.54 51.64 57.35 149.74 cyclohexane 4 14.5635 1.61 1.0099 144.99 1.58 23.72 43.53 50.09 123.97 cyclohexane 1,1-dimethylferrocene 5 13.0504 6.63 0.516 92.33 5.36 219.79 28.45 37.44 191.46 1,3.5-trimethylferrocene 12 3.4685 8.89 1.452.0 101.34 3.04 66.34 25.76 25.20 61.82 chrone trackloride 6 0.5499 5.45 1.061 102.47 1.11 76.72 6.41 4.69 61.75 ethane 5 0.8264 7.55 2.021 101.34 3.04 66.63 4.349 1.35.7 ethylernocene 6 7.7648 6.00 2.1435 98.01 2.66 66.64 8.49 9.36 8.06 ethylernocene 5 7.7648		ethylbenzene	4	17.2713	1.55	0.8035	144.09	1.33	35.01	55.63	61.41	157.33
p-xylene 4 13,3319 2.84 0.7054 140.699 1.54 17.09 35.18 40.13 124.47 cyclohexane 1,1-dimethyllerocene 5 13.0504 66.3 0.5416 98.23 5.36 21.979 28.45 37.44 191.46 argon 6 -0.4301 6.03 2.689 96.95 2.44 43.30 21.29 4.19 14.01 argon 6 -0.4301 6.03 2.689 96.95 2.44 43.30 21.29 4.19 14.01 argon 6 5.0824 7.55 2.0214 100.00 2.40 106.17 25.57 17.12 19.02 ethylene 5 0.8145 9.28 2.143 190.07 2.20 13.83.74 14.29 ethylene 5 0.8145 9.28 2.017 2.00 2.08.07 19.03 15.54 14.29 ethylence 5 7.4065 6.67 0.5414 97.15 5.22		o-xylene	4	16.4807	2.39	0.9929	147.66	2.24	29.54	51.64	57.35	149.74
roluene 4 14.5635 1.61 1.0099 144.99 1.58 2.3.72 4.3.53 50.09 12.3.97 cyclohexane 1,1-dimethylferrocene 5 13.0504 6.63 0.5116 98.23 53.66 219.79 28.45 37.44 191.46 argon 6 -0.4301 6.03 2.6698 9695 2.44 43.30 21.29 4.19 14.01 benzene 12 3.4685 8.89 1.4520 101.34 3.04 66.34 2.575 25.20 61.82 ethylene 5 0.8264 7.55 2.143 100.00 2.40 106.17 25.57 17.12 19.02 ethylene 5 0.8264 7.55 2.1435 99.75 2.30 102.01 25.16 15.52 17.12 19.02 ethylene 6 4.3374 4.43 2.8585 99.81 1.26 66.64 8.49 3.68 8.06 retylene 8 4.3613		<i>p</i> -xylene	4	13.5319	2.84	0.7954	140.69	1.94	17.09	35.18	40.13	124.47
cyclohexane 1,1'-dimethylferrocene 5 13,054 6,63 0.5416 98,23 5,36 219,79 28,45 37,44 191,46 1,3,5-trimethyllenzene 12 4,2229 11,78 1,1194 101,54 2,42 56,15 26,15 24,98 74,04 benzene 12 3,4685 8,89 1,4520 101,34 304 66,34 25,76 25,20 61,82 carbon tetrachloride 5 0,8264 7,55 2,0214 100,00 2,40 106,17 25,57 17,12 19,02 ethylere 5 0,8264 7,55 2,0214 100,00 2,40 106,17 25,57 17,12 19,02 ethylerocene 6 1,22874 5,38 0,5775 9,911 5,21 191,79 28,46 16,36 13,37 krypton 6 7,468 6,67 0,2481 97,15 5,52 71,02 35,44 44,37 18,37 krypton 6		toluene	4	14.5635	1.61	1.0099	144.99	1.58	23.72	43.53	50.09	123.97
1.3.5-trimethylbenzene 12 4.2229 11.78 11.194 101.54 2.42 56.15 26.15 24.98 74.04 benzene 12 3.468 8.89 1.4520 101.34 3.04 663.4 25.76 25.20 61.82 carbon tetrachloride 6 5.5469 5.45 1.3613 102.47 1.11 76.72 6.41 4.69 61.75 ethane 5 0.8244 7.55 2.0214 100.00 2.40 106.17 25.57 17.12 190.20 ethylferrocene 6 0.8244 7.55 2.014 100.00 2.40 106.17 25.57 17.12 190.20 38.05 193.21 ferrocene 5 7.4065 6.67 0.5481 97.15 5.52 71.02 35.44 44.33 183.7 krypton 6 4.3374 4.43 2.885 99.81 0.68 40.39 28.46 16.26 13.59 naphthalene 12	cyclohexane	1,1'-dimethylferrocene	5	13.0504	6.63	0.5416	98.23	5.36	219.79	28.45	37.44	191.46
argon 6 -0.4301 6.03 2.6698 96.95 2.44 43.30 21.29 4.19 14.01 benzene 12 3.4685 8.89 1.4520 10.134 3.04 66.34 25.76 25.20 61.82 carbon tetrachloride 6 5.549 5.45 1.3613 102.47 1.11 76.72 6.41 4.69 61.75 ethylene 5 0.8145 9.28 2.1435 99.75 2.30 102.01 25.19 17.12 19.02 ethylferrocene 6 12.2874 5.98 0.5775 99.11 5.21 191.79 29.02 38.05 193.21 ferrocene 6 7.74065 6.67 0.5481 97.15 5.52 7.102 35.44 44.73 183.7 krypton 6 7.74065 6.67 0.5481 99.81 0.68 40.39 28.64 16.66 13.59 naphthalene 12 3.3398 11.63 1.1611 101.22 2.38 2.87.3 40.98 36.91 37.42		1,3,5-trimethylbenzene	12	4.2229	11.78	1.1194	101.54	2.42	56.15	26.15	24.98	74.04
benzene 12 3.485 8.89 1.4520 101.34 3.04 66.34 2.576 2.520 61.82 carbon tetrachloride 5 5.5469 5.45 1.3613 102.47 1.11 76.72 6.41 4.69 61.75 ethyler 5 0.8264 7.55 2.0214 100.00 2.40 106.17 25.57 17.12 19.02 ethylferrocene 5 0.8145 9.28 2.1735 99.75 2.30 102.01 25.19 15.54 14.29 ethylferrocene 5 7.4065 6.67 0.5481 97.15 5.52 71.02 35.44 44.73 183.7 methane 6 7.3764 6.00 2.1405 98.04 1.26 66.64 8.49 9.36 8.06 methane 12 3.3398 1.1611 101.24 2.99 40.63 26.63 2.461 69.07 phenanthrene 8 3.4651 12.40 1.2210 100.22		argon	6	-0.4301	6.03	2.6698	96.95	2.44	43.30	21.29	4.19	14.01
n-decane 6 5.549 5.45 1.3613 102.47 1.11 767.27 6.41 4.69 61.75 ethane 5 0.8264 7.55 2.0214 100.00 2.40 106.17 2.557 17.12 19.02 ethylene 5 0.8145 9.28 2.1435 99.75 2.30 102.01 25.19 15.54 14.29 ethylene 6 1.22874 5.98 0.5775 99.11 5.52 71.02 35.04 143.7 krypton 6 7.7648 6.00 2.1405 98.04 1.26 66.64 8.49 9.36 8.06 methane 6 4.3374 4.43 2.2858 99.81 0.68 40.39 28.46 16.26 13.59 naphthalene 12 3.3398 11.63 1.1611 101.22 2.83 28.73 40.98 6.91 37.42 p-xylene 8 3.4561 12.210 100.22 3.82 2.87		benzene	12	3.4685	8.89	1.4520	101.34	3.04	66.34	25.76	25.20	61.82
ethane 5 0.8264 7.5 2.0214 100.00 2.40 106.17 25.57 17.12 19.02 ethylerocene 6 0.22874 5.98 2.1435 99.75 2.30 102.01 25.19 15.54 142.9 ethylferrocene 6 12.2874 5.98 0.5775 99.11 5.21 119.179 29.02 38.05 193.21 ferrocene 5 7.4065 6.67 0.5481 97.15 5.52 71.02 35.44 44.73 183.7 krypton 6 7.7648 6.00 2.1405 98.04 1.26 66.64 8.69 36.96 36.96 36.96 37.99 31.04 10.82 2.99 40.63 26.63 24.61 69.07 naphthalene 12 3.3398 11.63 1.1611 101.24 2.99 40.63 26.63 24.61 65.9 37.42 phenanthrene 8 3.4651 1.20 102.22 3.88 28.73 40.98 36.91 37.42 tetrabyltrin 7 0.6382		carbon tetrachloride	6	5.5469	5.45	1.3613	102.47	1.11	76.72	6.41	4.69	61.75
n-decane 12-crown-5 0.8145 9.28 2.1435 99.75 2.30 102.01 25.19 15.54 14.29 ethylferrocene 6 12.2874 5.98 0.5775 99.11 5.21 191.79 29.02 38.05 193.21 ferrocene 5 7.4065 6.67 0.5481 97.15 5.52 71.02 35.44 44.73 183.7 krypton 6 7.7648 6.00 2.1405 98.04 1.26 66.64 8.49 9.36 8.06 naphthalene 12 3.3398 11.63 1.1611 101.24 2.99 40.63 26.63 24.61 69.07 phenanthrene 8 3.4551 12.40 0.9775 101.00 4.31 6.34 39.49 34.47 47.00 p-xylene 8 3.4561 12.40 0.9775 101.00 4.31 6.34 39.49 34.47 47.00 tetrabutyltin 7 10.9921 6.98 0.7438 103.12 2.35 13.61 6.48 8.50 145.59		ethane	5	0.8264	7.55	2.0214	100.00	2.40	106.17	25.57	17.12	19.02
n-decane 6 12.2874 5.98 0.5775 99.11 5.21 191,79 29.02 38.05 193.21 ferrocene 5 7.4065 6.67 0.5481 97.15 5.52 71.02 35.44 44.73 183.7 krypton 6 7.7648 6.00 2.1405 98.04 1.26 66.64 8.49 9.36 8.06 methane 6 4.3374 4.43 2.8585 99.81 0.68 40.39 28.46 16.26 13.59 naphthalene 12 3.3398 11.63 1.1611 101.24 2.99 40.63 26.63 24.61 69.07 p-sylene 8 4.551 12.40 1.2210 100.22 3.88 28.73 40.98 36.91 37.42 tetrabutyltin 7 10.9921 6.98 0.7438 103.12 2.35 13.61 6.48 8.50 145.59 tetrabutyltin 7 5.3872 8.22 1.2553 102.25 1.25 94.10 4.80 10.31 81.47 tetrap		ethylene	5	0.8145	9.28	2.1435	99.75	2.30	102.01	25.19	15.54	14.29
n-decane 1 5 7,4065 6.67 0.5481 97.15 5.52 71.02 35.44 44.73 183.7 krypton 6 7,7648 6.00 2.1405 98.04 1.26 66.64 8.49 9.36 8.06 methane 6 4.33 2.855 99.81 0.68 40.39 28.66 16.26 13.59 phanthrene 12 3.3398 11.63 1.1611 101.24 2.99 40.63 26.63 24.61 69.07 p-xylene 8 34.51 12.40 1.2210 10.02 3.88 28.73 40.98 36.47 47.00 p-xylene 8 34.61 12.40 1.2210 10.22 3.88 28.73 40.98 36.47 47.00 tetrabutyltin 7 5.327 8.22 1.255 13.61 6.48 8.50 145.59 tetraethyltin 7 5.327 8.22 1.255 94.10 4.80 10.31 81.47 tetraethyltin 6 7.7236 7.97 0.8573 <		ethylferrocene	6	12.2874	5.98	0.5775	99.11	5.21	191.79	29.02	38.05	193.21
krypton 6 7.7648 6.00 2.1405 98.04 1.26 66.64 8.49 9.36 8.06 methane 6 4.3374 4.43 2.8585 99.81 0.68 40.39 28.66 16.26 13.59 naphthalene 12 3.398 11.61 101.24 2.99 40.63 26.63 24.61 69.07 phenanthrene 8 4.5913 10.49 0.9775 101.00 4.31 6.34 39.49 34.47 47.00 p-xylene 8 3.4651 12.40 1.2210 100.22 3.88 28.73 40.98 36.91 37.42 tetrabuyltin 7 6.2492 7.33 1.0441 102.93 2.16 57.13 5.80 6.36 101.58 tetrapuyltin 6 7.7236 7.97 0.8573 102.94 2.10 21.82 4.89 7.53 12.98 tetrapuyltin 6 7.6726 7.97 0.8573 102.94 2.10 21.82 4.89 7.63 12.98 xetnon 6		ferrocene	5	7.4065	6.67	0.5481	97.15	5.52	71.02	35.44	44.73	183.7
methane 6 4.3374 4.43 2.8585 99.81 0.68 40.39 28.46 16.26 13.59 naphthalene 12 3.3398 11.63 1.161 101.24 2.99 40.63 26.63 24.61 69.07 phenanthrene 8 4.5913 10.49 0.9775 101.00 4.31 6.34 39.49 34.47 47.00 p-xylene 8 3.4651 12.40 1.2210 100.22 3.88 28.73 40.98 36.91 37.42 tetrabutyltin 7 6.2492 7.33 1.0441 102.93 2.16 57.13 5.80 6.36 101.58 tetramethyltin 7 5.3872 8.22 1.2553 102.94 2.10 21.82 4.89 7.53 129.86 tetramethyltin 6 7.7236 7.97 0.8573 102.94 2.10 21.82 4.89 7.53 129.86 tetramethyltin 6 3.6475 11.88		krypton	6	7.7648	6.00	2.1405	98.04	1.26	66.64	8.49	9.36	8.06
naphthalene 12 3.3398 11.63 1.1611 101.24 2.99 40.63 26.63 24.61 69.07 phenanthrene 8 4.591 10.49 0.9775 101.00 4.31 6.34 39.49 34.47 47.00 p-xylene 8 3.4651 12.40 1.2210 100.22 3.88 28.73 40.98 36.91 37.42 tetrabutyltin 7 10.9921 6.98 0.7438 103.12 2.35 13.61 6.48 8.50 145.59 tetratethyltin 7 6.2492 7.33 1.041 102.93 2.16 57.13 5.80 6.36 101.58 tetrapropyltin 6 7.7236 7.97 0.8573 102.94 2.10 21.82 4.89 7.53 129.86 toluene 12 2.6425 11.38 1.3305 100.99 2.85 55.83 26.14 24.07 59.85 xenon 12-crown-4 14.9215 4.33 <		methane	6	4.3374	4.43	2.8585	99.81	0.68	40.39	28.46	16.26	13.59
phenanthrene 8 4.5913 10.49 0.9775 101.00 4.31 6.34 39.49 34.47 47.00 p-xylene 8 3.4651 12.40 1.2210 100.22 3.88 28.73 40.98 36.91 37.42 tetrabutyltin 7 10.921 6.98 0.7438 103.12 2.35 13.61 6.48 8.50 145.59 tetratethyltin 7 6.2492 7.33 1.0441 102.93 2.16 57.13 5.80 6.36 101.58 tetratethyltin 7 5.3872 8.22 1.2553 102.25 1.25 94.10 4.80 10.31 81.47 tetrapropyltin 6 7.7236 7.97 0.8573 102.94 2.10 21.82 4.89 7.53 129.86 toluene 12 2.6425 11.38 1.3305 100.99 2.85 5.62 13.76 25.48 n-decane 12-crown-4 4 14.9215 4.33 <t< td=""><td></td><td>naphthalene</td><td>12</td><td>3.3398</td><td>11.63</td><td>1.1611</td><td>101.24</td><td>2.99</td><td>40.63</td><td>26.63</td><td>24.61</td><td>69.07</td></t<>		naphthalene	12	3.3398	11.63	1.1611	101.24	2.99	40.63	26.63	24.61	69.07
p-xylene 8 3.4651 12.40 1.2210 100.22 3.88 28.73 40.98 36.91 37.42 tetrabutyltin 7 10.9921 6.98 0.7438 103.12 2.35 13.61 6.48 8.50 145.59 tetraethyltin 7 6.2492 7.33 1.0441 102.93 2.16 57.13 5.80 6.36 101.58 tetramethyltin 7 5.3872 8.22 1.2553 102.25 1.25 94.10 4.80 10.31 81.47 tetrapropyltin 6 7.72.66 7.97 0.8573 102.94 2.10 21.82 4.89 7.53 129.86 toluene 12 2.6425 11.38 1.3305 100.99 2.85 55.83 26.14 24.07 59.85 xenon 6 3.6475 10.18 1.8186 99.39 1.15 85.28 5.62 13.76 25.48 n-decane 12-crown-4 16.2075 7.28		phenanthrene	8	4.5913	10.49	0.9775	101.00	4.31	6.34	39.49	34.47	47.00
n-decane 12-crown-4 4 14.9215 4.33 0.5689 183.45 2.87 40.09 24.21 24.33 174.46 15-crown-5 4 16.2075 7.28 0.4554 188.45 2.87 40.09 24.21 24.33 1.441 102.93 2.16 57.13 5.80 6.36 101.58 101.58 tetramethyltin 7 5.3872 8.22 1.2553 102.25 1.25 94.10 4.80 10.31 81.47 tetrapropyltin 6 7.736 7.97 0.8573 100.99 2.85 55.83 26.14 24.07 59.85 xenon 6 3.6475 10.18 1.8186 99.39 1.15 85.28 5.62 13.76 25.48 n-decane 12-crown-4 4 16.2075 7.28 0.4514 182.06 5.22 22.23 28.12 27.29 204.00 18-crown-6 4 16.8132 3.78 0.4654 184.73 3.14 <		<i>p</i> -xylene	8	3.4651	12.40	1.2210	100.22	3.88	28.73	40.98	36.91	37.42
tetraethyltin 7 6.2492 7.33 1.0441 102.93 2.16 57.13 5.80 6.36 101.58 tetramethyltin 7 5.3872 8.22 1.2553 102.25 1.25 94.10 4.80 10.31 81.47 tetrapropyltin 6 7.7236 7.97 0.8573 102.94 2.10 21.82 4.89 7.53 129.86 toluene 12 2.6425 11.38 1.3305 100.99 2.85 55.83 26.14 24.07 59.85 xenon 6 3.6475 10.8 1.8186 9.39 1.15 85.28 5.62 13.76 25.48 n-decane 12-crown-4 4 14.9215 4.33 0.5689 183.45 2.87 40.09 24.21 24.33 174.46 15-crown-5 4 16.2075 7.28 0.4514 182.06 5.22 22.23 28.12 27.29 204.00 18-crown-6 4 16.8132 3.78 0.4654 184.73 3.14 4.80 28.17 27.06 224.00		tetrabutyltin	7	10.9921	6.98	0.7438	103.12	2.35	13.61	6.48	8.50	145.59
tetramethyltin 7 5.3872 8.22 1.253 102.25 1.25 94.10 4.80 10.31 81.47 tetrapropyltin 6 7.7236 7.97 0.8573 102.94 2.10 21.82 4.89 7.53 129.86 toluene 12 2.6425 11.38 1.3305 100.99 2.85 55.83 26.14 24.07 59.85 xenon 6 3.6475 10.18 1.8186 99.39 1.15 85.28 5.62 13.76 25.48 n-decane 12-crown-4 4 14.9215 4.33 0.5689 183.45 2.87 40.09 24.21 24.33 174.46 15-crown-5 4 16.2075 7.28 0.4514 182.06 5.22 22.23 28.12 27.29 204.00 18-crown-6 4 16.8132 3.78 0.4654 184.73 3.14 4.80 28.17 27.06 224.00 argon 3 11.9514 0.79 1.8070 179.89 0.32 47.60 3.65 28.17 15.91 </td <td></td> <td>tetraethyltin</td> <td>7</td> <td>6.2492</td> <td>7.33</td> <td>1.0441</td> <td>102.93</td> <td>2.16</td> <td>57.13</td> <td>5.80</td> <td>6.36</td> <td>101.58</td>		tetraethyltin	7	6.2492	7.33	1.0441	102.93	2.16	57.13	5.80	6.36	101.58
tetrapropyltin 6 7.7236 7.97 0.8573 102.94 2.10 21.82 4.89 7.53 129.86 toluene 12 2.6425 11.38 1.3305 100.99 2.85 55.83 26.14 24.07 59.85 n-decane 12-crown-4 4 14.9215 4.33 0.5689 183.45 2.87 40.09 24.21 24.33 174.46 15-crown-5 4 16.2075 7.28 0.4514 182.06 5.22 22.23 28.12 27.29 204.00 18-crown-6 4 16.8132 3.78 0.4654 184.73 3.14 4.80 28.17 27.06 224.20 argon 3 11.9514 0.79 1.8070 179.89 0.32 47.60 3.65 28.17 15.91 carbon tetrachloride 3 12.3033 2.64 0.7923 183.18 0.14 71.32 17.93 22.49 122.24 dicyclobexano-18-crown-6 4 18.8529 1.80 0.3344 185.79 1.16 84.24 27.03 27.14 </td <td></td> <td>tetramethyltin</td> <td>7</td> <td>5.3872</td> <td>8.22</td> <td>1.2553</td> <td>102.25</td> <td>1.25</td> <td>94.10</td> <td>4.80</td> <td>10.31</td> <td>81.47</td>		tetramethyltin	7	5.3872	8.22	1.2553	102.25	1.25	94.10	4.80	10.31	81.47
toluene 12 2.6425 11.38 1.3305 100.99 2.85 55.83 26.14 24.07 59.85 n-decane 12-crown-4 4 14.9215 4.33 0.5689 183.45 2.87 40.09 24.21 24.33 174.46 15-crown-5 4 16.2075 7.28 0.4514 182.06 5.22 22.23 28.12 27.29 204.00 18-crown-6 4 16.8132 3.78 0.4654 184.73 3.14 4.80 28.17 27.06 224.00 argon 3 11.9514 0.79 1.8070 179.89 0.32 47.60 3.65 28.17 15.91 carbon tetrachloride 3 12.3033 2.64 0.7923 183.18 0.14 71.32 17.93 22.49 122.24 dicyclohexano-18-crown-6 4 18.8529 1.80 0.3310 185.79 1.16 84.24 27.03 27.14 272.75 dicyclohexano-24-crown-8 4 18.8549 1.80 0.3314 185.79 1.16 84.24 29.14		tetrapropyltin	6	7,7236	7.97	0.8573	102.94	2.10	21.82	4.89	7.53	129.86
xenon 6 3.6475 10.18 1.8186 99.39 1.15 85.28 5.62 13.76 25.48 n-decane 12-crown-4 4 14.9215 4.33 0.5689 183.45 2.87 40.09 24.21 24.33 174.46 15-crown-5 4 16.2075 7.28 0.4514 182.06 5.22 22.23 28.12 27.29 204.00 18-crown-6 4 16.8132 3.78 0.4654 184.73 3.14 4.80 28.17 27.06 224.00 argon 3 11.9514 0.79 1.8070 179.89 0.32 47.60 3.65 28.17 15.91 carbon tetrachloride 3 12.3033 2.64 0.7923 183.18 0.14 71.32 17.93 22.49 122.24 dicyclohexano-18-crown-6 4 18.8529 1.80 0.3340 185.79 1.16 84.24 27.03 27.14 272.75 dicyclohexano-24-crown-8 4 18.8549 1.80 0.3344 185.84 1.71 137.91 29.14 <t< td=""><td></td><td>toluene</td><td>12</td><td>2.6425</td><td>11.38</td><td>1.3305</td><td>100.99</td><td>2.85</td><td>55.83</td><td>26.14</td><td>24.07</td><td>59.85</td></t<>		toluene	12	2.6425	11.38	1.3305	100.99	2.85	55.83	26.14	24.07	59.85
n-decane 12-crown-4 4 14.9215 4.33 0.5689 183.45 2.87 40.09 24.21 24.33 174.46 15-crown-5 4 16.2075 7.28 0.4514 182.06 5.22 22.23 28.12 27.29 204.00 18-crown-6 4 16.8132 3.78 0.4654 184.73 3.14 4.80 28.17 27.06 224.00 argon 3 11.9514 0.79 1.8070 179.89 0.32 47.60 3.65 28.17 15.91 carbon tetrachloride 3 12.3033 2.64 0.7923 183.18 0.14 71.32 17.93 22.49 122.24 dicyclohexano-18-crown-6 4 18.8529 1.80 0.3810 185.79 1.16 84.24 27.03 27.14 272.75 dicyclohexano-24-crown-8 4 18.8549 1.80 0.3344 185.84 1.71 137.91 29.14 30.64 304.55		xenon	6	3.6475	10.18	1.8186	99.39	1.15	85.28	5.62	13.76	25.48
15-crown-5 4 16.2075 7.28 0.4514 182.06 5.22 22.23 28.12 27.29 204.00 18-crown-6 4 16.8132 3.78 0.4654 184.73 3.14 4.80 28.17 27.06 224.00 argon 3 11.9514 0.79 1.8070 179.89 0.32 47.60 3.65 28.17 15.91 carbon tetrachloride 3 12.3033 2.64 0.7923 183.18 0.14 71.32 17.93 22.49 122.24 dicyclohexano-18-crown-6 4 18.8529 1.80 0.3810 185.79 1.16 84.24 27.03 27.14 272.75 dicyclohexano-24-crown-8 4 18.8549 1.80 0.3344 185.84 1.71 137.91 29.14 30.64 304.55	<i>n</i> -decane	12-crown-4	4	14.9215	4.33	0.5689	183.45	2.87	40.09	24.21	24.33	174.46
18 - crown-6 4 16.8132 3.78 0.4654 184.73 3.14 4.80 28.17 27.06 224.00 argon 3 11.9514 0.79 1.8070 179.89 0.32 47.60 3.65 28.17 15.91 carbon tetrachloride 3 12.3033 2.64 0.7923 183.18 0.14 71.32 17.93 22.49 122.24 dicyclohexano-18-crown-6 4 18.8529 1.80 0.3810 185.79 1.16 84.24 27.03 27.14 272.75 dicyclohexano-24-crown-8 4 18.8549 1.80 0.3344 185.84 1.71 137.91 29.14 30.64 304.55		15-crown-5	4	16 2075	7.28	0.4514	182.06	5 22	22.23	28.12	27.29	204.00
argon 3 11.9514 0.79 1.8070 179.89 0.32 47.60 3.65 28.17 15.91 carbon tetrachloride 3 12.3033 2.64 0.7923 183.18 0.14 71.32 17.93 22.49 122.24 dicyclohexano-18-crown-6 4 18.8529 1.80 0.3810 185.79 1.16 84.24 27.03 27.14 272.75 dicyclohexano-24-crown-8 4 18.8549 1.80 0.3344 185.84 1.71 137.91 29.14 30.64 304.55		18-crown-6	4	16 8132	3 78	0.4654	184 73	3 14	4 80	28.12	27.06	224 00
carbon tetrachloride 3 12.3033 2.64 0.7923 183.18 0.14 71.32 17.93 22.49 122.24 dicyclohexano-18-crown-6 4 18.8529 1.80 0.3810 185.79 1.16 84.24 27.03 27.14 272.75 dicyclohexano-24-crown-8 4 18.8549 1.80 0.3344 185.84 1.71 137.91 29.14 30.64 304.55		argon	3	11 9514	0.79	1 8070	179.89	0.32	47.60	3.65	28.17	15 91
dicyclohexano-18-crown-8 4 18.8529 1.80 0.3840 185.79 1.16 84.24 27.03 27.14 272.75 dicyclohexano-24-crown-8 4 18.8549 1.80 0.3344 185.84 1.71 137.91 29.14 30.64 304.55		carbon tetrachloride	3	12 3033	2.64	0 7923	183.18	0.14	71 32	17.93	22.17	122.24
dicyclohexano-24-crown-8 4 18.8549 1.80 0.3344 185.84 1.71 137.91 29.14 30.64 304.55		dicyclohexano-18-crown-6	4	18 8529	1 80	0 3810	185.70	1 16	84 74	27.03	27.45	272 75
		dicyclohexano-24-crown-8	4	18.8549	1.80	0.3344	185.84	1.71	137.91	29.14	30.64	304.55

System		D _{12,Real}	(This work: Eqs.	(8)–(17))	DHB (Eq. (27))			Zhu (Eqs. (21)-(26))	WC (Eq. (18))	LR (Eq. (19))	LT (Eq. (20))
Solvent (1)	Solute (2)	NDP	$E_{\rm D} imes 10^9$ (erg/mol)	AARD	$\frac{B \times 10^7}{(mol/cm s K^{1/2})}$	V _D (cm ³ /mol)	AARD	AARD	AARD	AARD	AARD
	krypton	3	19.0725	0.39	1.3923	180.80	0.78	69.75	16.32	45.82	45.72
	methane	3	17.5992	0.91	1.8223	181.67	0.03	46.00	12.44	7.71	18.52
	s-trioxane	4	13.2383	2.37	0.8812	182.90	0.42	50.22	25.93	35.61	112.93
	tetrabutyltin	4	19.3337	6.66	0.4353	185.39	2.16	20.57	23.40	22.46	216.69
	tetraethyltin	3	13.7937	6.62	0.5949	183.97	1.42	47.46	19.59	19.92	157.62
	tetramethyltin	4	14.0521	5.56	0.7287	183.47	1.43	71.35	30.51	36.23	131.15
	tetrapropyltin	4	16.6352	6.66	0.4903	184.67	1.55	24.65	23.25	22.27	190.08
	xenon	4	13.5149	2.14	1.1823	181.74	0.62	68.96	23.29	46.08	65.08
<i>n</i> -dodecane	1.3.5-trimethylbenzene	4	15.1196	2.09	0.4609	213.97	0.79	119.21	16.71	13.20	206.98
	acetone	5	17.4902	1.19	0.8244	215.52	1.68	102.53	16.62	23.08	133.34
	benzene	4	15.2967	0.79	0.6766	214.82	1.30	122.54	16.31	18.96	156.36
	carbon dioxide	9	17,7949	3.09	1.2167	210.03	2.20	23.83	10.06	18.79	17.40
	carbon monoxide	9	18.0846	7.20	1.4392	212.70	5.90	27.26	17.45	16.32	13.29
	hvdrogen	9	34.2553	6.57	3.9660	215.14	5.29	47.80	59.75	44.93	59.39
	linoleic acid methyl ester	4	20.7100	0.53	0.2853	217.39	0.92	41.86	13.66	8.50	335.44
	<i>m</i> -xylene	4	13 4291	1 43	0 5477	214 25	1 54	108 51	933	7.60	173 92
	naphthalene	5	13.7023	2.07	0.5064	214.04	1.41	81.24	12.27	9.28	183.79
	<i>n</i> -decane	5	13.1427	6.85	0.5822	219.24	2.98	29.97	21.54	25.19	80.95
	<i>n</i> -hexadecane	5	18.3101	6.69	0.4466	221.99	6.69	19.30	14.84	19.00	130.15
	<i>n</i> -octane	9	12.9556	4.16	0.6640	218.97	1.48	25.45	21.35	24.34	62.05
	<i>n</i> -tetradecane	5	15 1250	8 76	0.4729	221.14	7.84	17 19	18.00	20.79	114 67
	toluene	4	14.0054	1.47	0.6374	214.93	2.01	110.79	9.90	9.70	159.39
n-eicosane	carbon dioxide	5	30 6951	2.07	0 8724	352.03	2.07	21.16	16.80	21 39	28.22
n-cicosanc	carbon monoxide	5	32 4152	2.07	1 0324	354 30	2.07	31 74	19.36	15.23	13 28
	hydrogen	5	53 2444	4 04	3 0212	357.65	4.65	36.80	62.00	45.86	54.06
	n-dodecane	5	23 6796	4 55	0 3222	361.84	4 28	60 70	14.60	25.27	139.25
	<i>n</i> -beyadecane	5	25.0750	5.52	0.3222	362.04	3 44	55 72	13.47	23.27	169.03
	<i>n</i> -octane	5	22.6581	4.66	0.4003	359.67	4.78	56.15	16.80	24.94	103.21
n-bentane	n-decape	5	10 7032	3 10	0.9631	132.45	1.65	6.81	34.06	28.81	36 75
n-neptane	<i>n</i> -dodecane	5	11 1033	3.08	0.8855	132.45	2.18	15 55	30.61	24.63	55 32
	<i>n</i> -beyadecane	8	14 0921	3 15	0.7499	133.87	3.09	24.56	33.68	26.86	57 37
	n-nexadecane	4	9 7681	2 4 5	1 1427	133.32	1 92	5.00	35.00	30.29	31.76
	<i>n</i> -tetradecane	5	11.2144	3.13	0.8028	133.05	2.96	29.65	29.40	22.68	64.30
n boyadacano	carbon diovido	10	21.0751	2.56	0.0270	278.07	1.01	24.92	12.21	24.25	24.16
<i>II-IICXductalle</i>	carbon monovido	10	22 0227	3.00	1.0400	278.37	2.09	51.40	12.21	19.74	24.10
	bydrogon	10	52.9257	12.00	2 1 2 1 4	260.25	5.06	27.24	15.21	10.74	10.71
	n docano	5	25 6504	5 72	2.1314	208.40	6.01	62.45	12.07	10.00	45.00
	n-decane	5	25.0504	2.05	0.4751	291.10	2.42	55 76	14.06	19.99	177.91
	n-octane	10	25,5220	5.05	0.5370	280.01	2.45	64.04	13.88	10.16	100.01
	<i>n</i> -tetradecane	5	25.2249	3.73	0.3774	290.23	5.42	42.01	13.59	21.15	139.97
n-hevape	1 1/-dimethylferroceno	Д	19 6538	5 75	0 1282	-0.01	5 76	57.06	19.62	32 93	109 75
n-nexatte	1 3 5-trimethylbenzene	20	12 4970	4 18	0.1202	101 17	14 54	5.88	48.09	46 33	52.86
	acetone	5	11 3525	2.10	1 4801	111.01	3.03	7 37	5.42	20.33	47.08
	acetonitrile	7	10 15/0	2.7 4 5 17	1 1551	102.14	5.05	22.16	115 32	146 30	185.38
	henzene	36	9 8177	5.17	1 1 1 3 7 1	102.14	14 54	22.10	80.10	88.03	105.50
	carbon disulphide	10	6/8172	6.00	1 1/00	102.21	4.66	64.04	178 18	224.06	262 /1
	ethylferrocepe	4	19 2020	5.56	0.1264	_0.01	- 1 .00 5 70	45.98	21.26	34.76	112.41
	ferrocene		14 6000	5.30	0.1204	-0.01	5.70	9.76	21.20	13.00	107.67
	iciiocciic	-	14.0000	J.J/	0.1302	-0.01	J.47	0.70	20.20	-J.UJ	107.07

Table 3 (Continued)

System		$D_{12,\text{Real}}$	(This work: Eqs.	(8)–(17))	DHB (Eq. (27))			Zhu (Eqs. (21)–(26))	WC (Eq. (18))	LR (Eq. (19))	LT (Eq. (20))
Solvent (1)	Solute (2)	NDP	$E_{\rm D} imes 10^9$ (erg/mol)	AARD	$B \times 10^7$ (mol/cm s K ^{1/2})	$V_{\rm D}~({\rm cm^3/mol})$	AARD	AARD	AARD	AARD	AARD
	indole	4	11.7688	4.11	0.4384	84.37	2.83	10.84	10.40	1.82	64.47
	<i>m</i> -xylene	5	11.5153	2.71	1.3601	115.15	2.00	5.49	6.24	11.14	70.80
	naphthalene	20	11.1684	5.43	0.8828	98.35	15.15	10.14	49.57	46.00	49.62
	phenanthrene	15	10.8404	5.07	0.6767	81.65	11.81	12.83	63.76	59.51	42.96
	p-xylene	17	11.2087	5.76	0.9088	93.68	16.35	8.34	56.45	54.22	49.73
	toluene	28	9.7194	6.71	1.0354	102.80	16.17	18.14	78.86	85.17	126.71
<i>n</i> -octane	1,3,5-trimethylbenzene	4	13.7859	0.99	0.8117	148.56	0.28	22.30	8.13	13.36	116.12
	argon	4	10.9264	1.78	1.9181	142.44	2.94	19.90	2.39	32.43	9.41
	benzene	4	9.6781	2.17	1.0124	144.89	0.22	16.11	0.98	7.81	66.99
	carbon tetrachloride	4	12.5805	1.54	1.0157	148.85	0.59	34.74	12.51	20.88	89.67
	ethyl benzene	4	12.7658	2.95	0.7797	145.55	1.55	22.88	6.06	11.77	101.41
	krypton	4	17.5478	1.56	1.5181	143.52	2.86	37.40	16.13	46.81	28.78
	methane	4	15.2991	2.11	2.0640	145.64	2.95	18.87	12.50	8.93	12.26
	o-xylene	4	10.9938	0.74	1.0323	149.57	0.87	13.46	1.66	4.90	88.19
	n-xylene	4	8 9739	0.83	1 0964	149 51	0.86	618	817	3.28	75 33
	tetrabutyltin	4	19 2556	3 34	0 5544	150.12	1 1 3	13 75	16.40	19.86	150.45
	tetraethyltin	5	15 3481	9.45	0.7116	148 73	631	17.69	20.42	24.33	121 38
	tetramethyltin	4	14 3788	4 89	0.8621	147.09	1 35	36.01	19.45	28.37	90.42
	tetrapropyltin	4	16.9356	3.89	0.6115	149.11	1.55	8.07	16.00	19.02	132.61
	toluene	4	10,5550	2.55	0.0113	145.10	1.10	15 73	1 81	5.83	78.27
	venop	4	13 3650	1.66	1 2228	145.23	1.51	13.75	20.04	14.22	/5.27
	Xelioli	4	15.5055	1.00	1.5258	145.25	1.04	42.04	20.04	44.22	45.81
propane	1-octene	8	8.2883	2.05	1.5602	57.26	1.91	9.91	7.32	26.64	14.87
	1-tetradecene	8	5.8133	2.09	1.3094	58.74	1.92	40.78	16.66	19.75	25.65
					Ga	s systems					
argon	ethane	9	5.3472	1.20	4.7507	7729.39	1.72	12.61	_	-	-
0	hvdrogen	5	-0.2416	5.44	23.0413	3938.78	2.29	72.01	_	-	-
	<i>i</i> -butane	8	9.0204	4.68	2.6722	5654.17	1.33	71.90	_	_	-
	methane	9	3.2619	3.06	7,7281	8889.20	1.49	22.49	_	_	_
	<i>n</i> -butane	8	8 2614	3.00	2 8191	6520.36	1 24	67 17	_	-	_
	neon	25	1.8476	1.71	10.3605	6724.28	5.46	35.22	_	_	-
	propane	9	6.5346	0.93	3.6775	7706.29	0.78	38.79	-	-	-
carbon diovide	ethylene	48	7 7370	7 10	2 9026	-3.87	4 70	0.12	_	_	_
carbon utoxide	bydrogen	40	1 5266	0.34	10 8027	5808 70	0.28	73.95			
	nydrogen	,	1.5200	0.54	15.8027	5858.70	0.20	73.35	_	-	-
carbon monoxide	helium	7	-3.2255	0.51	22.1377	5018.43	0.16	69.03	-	-	-
	hydrogen	7	-0.4555	0.26	22.1377	5018.43	0.16	70.85	-	-	-
deuterium	hydrogen	5	-2.1082	6.76	34.7676	2840.99	1.14	35.80	_	_	_
ethane	nitrogen	14	5.9819	1.46	4.8313	6847.25	0.95	11.79	-	-	-
ethylene	carbon dioxide	49	5.9946	5.65	3.0975	5.29	3.53	9.95	_	-	-
	nitrogen	7	4.8917	0.69	5.0043	5395.35	0.38	8.64	-	-	-
helium	hvdrogen	17	-3.7257	12.78	49.5883	5467.93	5.16	51.24	_	_	_
krypton	argon	6	6.9846	1.07	5.6514	11563.83	2.91	32.57	_	_	_
	helium	6	2 2108	0.93	22 0575	9617 38	2 38	81.76	_	_	_
	neon	17	6 7151	2 44	9.0618	8120.62	2.50	53 32		_	
	xenon	8	10.6048	1.07	3.3325	13066.53	2.92	9.25	-	_	-
		-									
methane	carbon dioxide	10	6.9849	1.75	5.9479	6501.16	1.72	19.26	-	-	-
	tetrachloroethene	5	11.9925	0.74	2.8076	7640.69	0.11	110.69	-	-	-

Table 3 (Continued)

System		$D_{12,\text{Real}}$ (This work: Eqs.	(8)-(17))	DHB (Eq. (27))			Zhu (Eqs. (21)–(26))	WC (Eq. (18))	LR (Eq. (19))	LT (Eq. (20))
Solvent (1)	Solute (2)	NDP	$E_{ m D} imes 10^9$ (erg/mol)	AARD	$B \times 10^7$ (mol/cm s K ^{1/2})	V _D (cm ³ /mol)	AARD	AARD	AARD	AARD	AARD
neon	deuterium	5	0.4004	3.80	24.0282	3212.22	1.12	46.96	I	I	I
	helium	24	-0.9529	5.87	28.0397	2125.92	1.25	57.07	ı	I	I
	hydrogen	IJ.	-2.0151	6.68	31.7987	2881.11	0.63	61.10	I	I	I
	xenon	9	2.6328	0.96	6.4366	4241.29	0.78	61.51	I	I	I
nitrogen	helium	8	-0.8881	3.09	21.4938	6427.19	2.11	66.53	I	I	I
	hydrogen	29	-2.0425	1.53	23.3826	4968.86	1.25	72.28	I	I	I
	methane	7	3.2152	2.60	7.4175	6561.84	1.81	18.82	I	I	I
	<i>n</i> -butane	5	10.1662	7.23	2.6491	3362.34	0.96	75.74	ı	I	I
	propane	9	9.7514	5.81	3.2798	4492.50	0.74	52.52	I	I	I
oxygen	helium	80	-1.1792	1.69	21.0509	4501.28	1.36	66.70	I	I	I
	hydrogen	13	-3.1834	2.65	26.2335	6132.89	0.50	72.82	I	I	I
sulfur hexafluoride	cyclohexane	Ŋ	10.4738	0.21	1.1504	8141.63	0.12	2.50	I	I	I
	methylcyclohexane	5	12.2512	0.88	1.1703	10547.92	0.32	11.66	I	I	I
tetrafluoromethane	1,1,1-trichloroethane	Ŋ	7.6343	0.80	1.4470	7233.94	0.86	37.93	I	I	I
	tetrachloroethene	5	9.6719	2.42	1.0459	3426.96	0.92	51.75	I	I	I

Fig. 3. Comparison between calculated and experimental tracer diffusivities for all systems studied in log-log scale.

vitamin K₃. In these cases, the unique properties already known were the molecular weight and boiling point. Note that most group contribution methods available to estimate T_c , P_c and V_c do not comprehend metallic atoms like Co, Fe, Pd, Cu, Sn. Hence, the critical constants have been calculated by Klincewicz [13,52]. Even so, the *AARDs* found were surprisingly small for these systems: 1.26 to 9.45%.

In Fig. 2 the calculated diffusivities for gas, liquid and supercritical systems are plotted against their experimental values. The three graphics show a good distribution along diagonal which confirms the new model does not exhibit systematic deviations. This fact, in conjunction with the low global AARDs of Table 4, evidences the potential of our model to represent tracer diffusivities of real molecules: AARD(Gas)=3.78%, AARD(Liquid)=5.35%, and AARD(SCF) = 4.32 %. Hence, one parameter seems sufficient to reach excellent results for a huge number of systems over wide ranges of temperature and density. In order to emphasize the good performance of the new model over the global range of diffusion coefficients, particularly at low temperatures and high densities where D_{12} is small, a comparison between the calculated and the experimental values of all systems studied is shown in Fig. 3 in loglog scale. The thin and almost linear distribution along diagonal highlights the accurate model behaviour.

In Table 4 the global deviations found for the remaining models are listed: $AARD_{WC} = 16.47\%$, $AARD_{LR} = 26.54\%$, $AARD_{LT} = 36.04\%$, AARD_{Zhu} = 37.66%, AARD_{DHB} = 3.84%. Despite possessing no parameters, the errors offered by the former four equations are not acceptable, particularly those for Lusis-Ratcliff [3,41], Lai-Tan [42], and Zhu et al. [38]. On the other hand, the free volume equation of Dymond [1,2,39] correlates experimental data very well, which may be attributed in part to the two parameters embodied: B and $V_{\rm D}$ (see Eq. (27)). Nonetheless, its result is comparable to that accomplished by our 1-parameter equation: 3.84 versus 4.40%. It is worth to note that the DHB equation presented two physically meaningless results: quite different minimum diffusive free volumes (V_D) for the same solvent, which is incorrect, and even negative values (see Table 3). For instance, for CO_2 (solvent) the following V_D values have been fitted: -49.61, -34.23, -26.59 cm³ mol⁻¹, etc. Moreover, the DHB equation should be used only for interpolation, which limits its application outside the fitting interval.

The prediction capability of our model has been also tested in this paper and compared with DHB performance according to the following procedure: (i) 118 systems containing experimental data at distinct temperatures have been chosen in order to fit E_D (new model), and B and V_D (DHB model) to the highest temperature

Table 4

Relative deviations for the supercritical, liquid and gas systems.

Type of system	NDP	NS	D _{12,Real} (Eqs. (8)–(17))	DHB (Eq. (27))	Zhu. (Eq. (21)-(26))	WC (Eq. (18))	LR (Eq. (19))	LT (Eq. (20))
Supercritical	4324	173	4.32	3.77	36.98	13.76	24.88	27.28
Liquid	675	104	5.35	5.27	40.53	33.85	37.16	92.15
Gas	422	37	3.78	2.33	39.95	-	-	-
Global	5421	314	4.40	3.84	37.66	16.47	26.54	36.04

Fig. 4. *V*_D parameter of DHB model (Eq. (27)) regressed using all database *versus V*_D fitted to data at only the highest temperature. Note the different scale of the two graphs (118 systems studied totalizing 3665 experimental points).

Table 5

Average absolute relative deviations calculated for: (i) correlation of the complete database (the same global values of Table 4; (ii) estimation of the diffusivities using parameters fitted only to the set of data at highest temperatures. Comparison accomplished for 118 systems/3665 points.

Model	AARD (all data fitted)	AARD (partial fitting)
DHB	3.84	15.74
New model	4.40	5.27

data; (ii) The parameters so obtained were subsequently used to estimate the tracer diffusivities by the new model and by DHB equation for the remaining lower temperatures. The results evidenced that the DHB prediction capacity is questionable since its *AARD* for prediction is 15.74%, whereas our new model only rises up to 5.27%. (Remember that the initially calculated deviations for complete correlation were 3.84 and 4.40%, respectively—see Table 4). Table 5 summarises this comparison. Furthermore, the V_D values fitted to all data and to part of them vary too much, as Fig. 4 points

Fig. 5. E_D parameter of our new model regressed using all database *versus* E_D fitted to data at only the highest temperature (118 systems studied totalizing 3665 experimental points).

out. Inclusively, some V_D values jump from positive to negative and vice-versa. In contrast, our E_D values remain approximately the same as Fig. 5 illustrates.

6. Conclusions

In this work a new model for tracer diffusion coefficients of real systems is proposed. It was derived on the basis of the HS model fluid, following a systematic derivation whereby the softness of repulsive interactions and the contribution of attractive forces were taken into account by means of the effective hard sphere diameter method and by coupling an Arrhenius exponential term. The model is explicit and straightforward: the diffusion coefficient is computed as function of temperature and density, and calls a diffusive parameter E_D , i.e. $D_{12,\text{Real}} = D_{12,\text{Real}}(T, \rho_1; E_D)$. This parameter can be obtained by linear optimization. The validation of the model has been accomplished with the largest data base ever compiled up till now, composed of 314 binary systems and 5421 experimental tracer diffusivities. All properties for the 205 molecules involved were collected and presented here. The new model provides very good results for gas, liquid and supercritical systems over wide ranges of temperature and density, giving rise to a global average absolute relative deviation of only 4.40%. It also offers excellent representations for systems whose critical constants necessary for the calculation of LJ energy and diameter had to be estimated previously. Finally it must be emphasized its good prediction capability.

Acknowledgments

Ana L. Magalhães wishes to thank PhD grant provided by Fundação para a Ciência e a Tecnologia (Portugal) (SFRH/BD/46776/2008).

References

- [1] J.H. Dymond, E. Bich, E. Vogel, W.A. Wakeham, V. Vesovic, M.J. Assael, Theory-dense fluids, in: J. Millat, J.H. Dymond, C.A. Nieto de Castro (Eds.), Transport Properties of Fluids-Their Correlation, Prediction and Estimation, Cambridge University Press, London, 1996, pp. 66–112.
- [2] C.M. Silva, H. Liu, Modeling of transport properties of hard sphere fluids and related systems, and its applications, in: A. Mulero (Ed.), Theory and

Simulation of Hard-Sphere Fluids and Related Systems, vol. 753, Springer, Berlin/Heidelberg, 2008, pp. 383–492.

- [3] K.K. Liong, P.A. Wells, N.R. Foster, Diffusion in supercritical fluids, The Journal of Supercritical Fluids 4 (1991) 91–108.
- [4] G. Knaff, E.U. Schlünder, Diffusion coefficients of naphthalene and caffeine in supercritical carbon dioxide, Chemical Engineering and Processing 21 (1987) 101–105.
- [5] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, USA, 2000.
- [6] L.S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, American Institute of Mining and Metallurgical Engineers Transactions 175 (1948) 184–201.
- [7] A Vignes, Diffusion in binary solutions. Variation of diffusion coefficient with composition, Industrial & Engineering Chemistry Fundamentals 5 (1966) 189–199.
- [8] M. Pertler, E. Blass, G.W. Stevens, Fickian diffusion in binary mixtures that form two liquid phases, AIChE Journal 42 (1996) 910–920.
- [9] B.J. Alder, D.M. Gass, T.E. Wainwright, Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid, The Journal of Chemical Physics 53 (1970) 3813–3826.
- [10] H.J.M. Hanley, R.D. McCarty, E.G.D. Cohen, Analysis of the transport coefficients for simple dense fluids: application of the modified Enskog theory, Physica 60 (1972) 322–356.
- [11] H. Liu, C.M. Silva, E.A. Macedo, Generalised free-volume theory for transport properties and new trends about the relationship between free volume and equations of state, Fluid Phase Equilibria 202 (2002) 89–107.
- [12] C.M. Silva, H. Liu, E.A. Macedo, Comparison between different explicit expressions of the effective hard sphere diameter of Lennard–Jones fluid: application to self-diffusion coefficients, Industrial & Engineering Chemistry Research 37 (1998) 221–227.
- [13] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 5th ed., McGraw-Hill Professional, New York, 2001.
- [14] Y. Rosenfeld, Relation between the transport coefficients and the internal entropy of simple systems, Physical Review A 15 (1977) 2545–2549.
- [15] Y. Rosenfeld, Comments on the transport coefficients of dense hard core systems, Chemical Physics Letters 48 (1977) 467–468.
- [16] Y. Rosenfeld, A quasi-universal scaling law for atomic transport in simple fluids, Journal of Physics: Condensed Matter 11 (1999) 5415–5427.
- [17] M. Dzugutov, A universal scaling law for atomic diffusion in condensed matter, Nature 381 (1996) 137-139.
- [18] J.-L. Bretonnet, Self-diffusion coefficient of dense fluids from the pair correlation function, Journal of Chemical Physics 117 (2002) 9370–9373.
- [19] J.-L. Bretonnet, Excess entropy scaling for the diffusion coefficient in expanded liquid metals, Journal of Chemical Physics 120 (2004) 11100–11106.
- [20] I. Yokoyama, A relationship between structural, thermodynamic, transport and surface properties of liquid metals: a hard-sphere description, Physica B: Condensed Matter 291 (2000) 145–151.
- [21] G.X. Li, C.S. Liu, Z.G. Zhu, Scaling law for diffusion coefficients in simple melts, Physical Review B 71 (2005) 1–7, 094209.
- [22] C.M. Silva, H. Liu, E.A. Macedo, Models for self-diffusion coefficients of dense fluids, including hydrogen-bonding substances, Chemical Engineering Science 53 (1998) 2423–2429.
- [23] H. Liu, C.M. Silva, E.A. Macedo, New equations for tracer diffusion coefficients of solutes in supercritical and liquid solvents based on the Lennard–Jones fluid model, Industrial & Engineering Chemistry Research 36 (1997) 246–252; H. Liu, C.M. Silva, E.A. Macedo, Corrected in Industrial & Engineering Chemistry Research 37 (1998) 308.
- [24] D. Enskog, Kinetische theorie der wänneleitung, reibung und selbstdiffusion in gewissen verdichteten gasen und flüssigkeiten, Kgl. Svenska Ventensk. Handl. 4 (1922).
- [25] G.A. Mansoori, N.F. Carnahan, K.E. Starling, T.W. Leland Jr., Equilibrium thermodynamic properties of the mixture of hard spheres, The Journal of Chemical Physics 54 (1971) 1523–1525.
- [26] A.L. Magalhães, F.A. DaSilva, C.M. Silva, New models for tracer diffusion coefficients of hard sphere and real systems—application to gases, liquids and supercritical fluids, Jounal of Supercritical Fluids, in press (Corrected Proof).
- [27] W. Sung, G. Stell, Theory of transport in dilute solutions, suspensions, and pure fluids. I. Translational diffusion, The Journal of Chemical Physics 80 (1984) 3350–3366.
- [28] C.K.J. Sun, S.H. Chen, Tracer diffusion of aromatic hydrocarbons in liquid cyclohexane up to its critical temperature, AIChE Journal 31 (1985) 1510– 1515.
- [29] A.J. Easteal, L.A. Woolf, Tracer diffusion in hard-sphere liquids from molecular dynamics simulations, Chemical Physics Letters 167 (1990) 329–333.
- [30] A.P. Eaton, A. Akgerman, Infinite-dilution diffusion coefficients in supercritical fluids, Industrial & Engineering Chemistry Research 36 (1997) 923–931.
- [31] E. Ruckenstein, H. Liu, Self-diffusion in gases and liquids, Industrial & Engineering Chemistry Research 36 (1997) 3927–3936.
- [32] H. Liu, C.M. Silva, E.A. Macedo, Unified approach to the self-diffusion coefficients of dense fluids over wide ranges of temperature and pressure—hard-sphere, square-well, Lennard–Jones and real substances, Chemical Engineering Science 53 (1998) 2403–2422.
- [33] T.-H. Chung, L.L. Lee, K.E. Starling, Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity, Industrial & Engineering Chemistry Fundamentals 23 (1984) 8–13.

- [34] T.-H. Chung, M. Ajlan, L.L. Lee, K.E. Starling, Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Industrial & Engineering Chemistry Research 27 (1988) 671–679.
- [35] J.B.J. Kushick, Berne Role of attractive forces in self-diffusion in dense Lennard–Jones fluids, Journal of Chemical Physics 59 (1973) 3732–3736.
- [36] J.E. Straub, Analysis of the role of attractive forces in self-diffusion of a simple fluid, Molecular Physics 76 (1992) 373–385.
- [37] R.J. Speedy, F.X. Prielmeier, T. Vardag, E.W. Lang, H.-D. Lüdemann, Diffusion in simple fluids, Molecular Physics 66 (1989) 577–590.
- [38] Y. Zhu, X. Lu, J. Zhou, Y. Wang, J. Shi, Prediction of diffusion coefficients for gas, liquid and supercritical fluid: application to pure real fluids and infinite dilute binary solutions based on the simulation of Lennard–Jones fluid, Fluid Phase Equilibria 194–197 (2002) 1141–1159.
- [39] J.H. Dymond, Corrected Enskog theory and transport coefficients of liquids, Journal of Chemical Physics 60 (1974) 969–973.
- [40] C.R. Wilke, C. Pin, Correlation of diffusion coefficients in dilute solutions, AIChE Journal 1 (1955) 264–270.
- [41] M.A. Lusis, C.A. Ratcliff, Diffusion in binary liquid mixtures at infinite dilution, The Canadian Journal of Chemical Engineering 46 (1968) 385–387.
- [42] C.C. Lai, C.S. Tan, Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column, Industrial & Engineering Chemistry Research 34 (1995) 674–680.
- [43] J.K. Johnson, J.A. Zollweg, K.E. Gubbins, The Lennard-Jones equation of state revisited, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics 78 (1993) 591–618.
- [44] K.S. Pitzer, D.R. Schreiber, Improving equation-of-state accuracy in the critical region; equations for carbon dioxide and neopentane as examples, Fluid Phase Equilibria 41 (1988) 1–17.
- [45] W.R. Hankinson, H.G. Thomson, A new correlation for saturated densities of liquids and their mixtures, AIChE Journal 25 (1979) 653–663.
- [46] A.K. Mehrotra, Generalized one-parameter viscosity equation for light and medium liquid hydrocarbons, Industrial & Engineering Chemistry Research 30 (1991) 1367–1372.
- [47] V.V. Altunin, M.A. Sakhabetdinov, Viscosity of liquid and gaseous carbon dioxide at temperatures 220–1300 K and pressure up to 1200 bar, Teploenergetika 8 (1972) 85–89.
- [48] M.T. Tyn, W.F. Calus, Estimating liquid molal volume, Processing 21 (1975) 16–17.
- [49] K.G. Joback, A unified approach to physical property estimation using multivariate statistical techniques, Master's Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, 1984.
- [50] K.G. Joback, R.C. Reid, Estimation of pure-component properties from groupcontributions, Chemical Engineering Communications 57 (1987) 233–243.
- [51] G.R. Somayajulu, Estimation procedures for critical constants, Journal of Chemical & Engineering Data 34 (1989) 106–120.
- [52] K.M. Klincewicz, R.C. Reid, Estimation of critical properties with group contribution methods, AlChE Journal 30 (1984) 137–142.
- [53] D. Ambrose, Correlation and estimation of vapour–liquid critical properties. I: critical temperatures of organic compounds, NPL Technical Report. Chem. 92, Nat. Physical Lab., Madison Wis., 1978.
- [54] D. Ambrose, Correlation and estimation of vapour-liquid critical properties. II: Critical pressure and critical volume, NPL Technical Report. Chem. 92, Nat. Physical Lab., Teddington, UK, 1979.
- [55] X. Wen, Y. Qiang, A new group contribution method for estimating critical properties of organic compounds, Industrial & Engineering Chemistry Research 40 (2001) 6245–6250.
- [56] L. Constantinou, R. Gani, New group contribution method for estimating properties of pure compounds, AIChE Journal 40 (1994) 1697–1710.
- [57] C.K.J. Sun, S.H. Chen, Diffusion of benzene, toluene, naphthalene, and phenanthrene in supercritical dense 2,3-dimethylbutane, AIChE Journal 31 (1985) 1904–1910.
- [58] Y.N. Yang, M.A. Matthews, Diffusion of chelating agents in supercritical CO_2 and a predictive approach for diffusion coefficients, Journal of Chemical and Engineering Data 46 (2001) 588–595.
- [59] C.Y. Kong, M. Nakamura, K. Sone, T. Funazukuri, S. Kagei, Measurements of binary diffusion coefficients for ferrocene and 1,1'-dimethylferrocene in supercritical carbon dioxide, Journal of Chemical & Engineering Data 55 (2010) 3095–3100.
- [60] K.M. González, J.L. Bueno, I. Medina, Measurement of diffusion coefficients for 2-nitroanisole, 1,2-dichlorobenzene and tert-butylbenzene in carbon dioxide containing modifiers, Journal of Supercritical Fluids 24 (2002) 219–229.
- [61] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Using supercritical fluid chromatography to determine diffusion coefficients of 1, 2-diethylbenzene, 1,4-diethylbenzene, 5-*tert*-butyl-*m*-xylene and phenylacetylene in supercritical carbon dioxide, Journal of Chromatography A 1167 (2007) 202–209.
- [62] P.R. Sassiat, P. Mourier, M.H. Caude, R.H. Rosset, Measurement of diffusion coefficients in supercritical carbon dioxide and correlation with the equation of Wilke and Chang, Analytical Chemistry 59 (1987) 1164–1170.
- [63] I. Swaid, G.M. Schneider, Determination of binary diffusion coefficients of benzene and some alkylbenzenes in supercritical CO₂ between 308 and 328 K in the pressure range 80–160 bar with supercritical fluid chromatography (SFC), Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 83 (1979) 969–974.
- [64] L.M. González, O. Suárez-Iglesias, J.L. Bueno, C. Pizarro, I. Medina, Limiting binary diffusivities of aniline, styrene, and mesitylene in supercritical carbon dioxide, Journal of Chemical and Engineering Data 52 (2007) 1286–1290.

- [65] O. Suárez-Iglesias, I. Medina, C. Pizarro, J.L. Bueno, Diffusion coefficients of 2-fluoroanisole, 2-bromoanisole, allylbenzene and 1,3-divinylbenzene at infinite dilution in supercritical carbon dioxide, Fluid Phase Equilibria 260 (2007) 279–286.
- [66] C.Y. Kong, N. Takahashi, T. Funazukuri, S. Kagei, Measurements of binary diffusion coefficients and retention factors for dibenzo-24-crown-8 and 15-crown-5 in supercritical carbon dioxide by chromatographic impulse response technique, Fluid Phase Equilibria 257 (2007) 223–227.
- [67] K. Abaroudi, Limpieza de Matrices Sólidas Porosas de Interés Medioambiental con Fluidos Supercríticos, Ph.D. Thesis, Departamento de Ingeniería Química, Universidad Politécnica de Cataluña, 2001.
- [68] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Diffusion coefficients of *n*-butylbenzene, *n*-pentylbenzene, 1-phenylhexane, 1-phenyloctane, and 1phenyldodecane in supercritical carbon dioxide, Industrial & Engineering Chemistry Research 47 (2008) 6783–6789.
- [69] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Molecular diffusion coefficients of phenylmethanol, 1-phenylethanol, 2-phenyl-1-propanol, and 3-phenyl-1-propanol in supercritical carbon dioxide, Journal of Supercritical Fluids 43 (2008) 469–476.
- [70] C.Y. Kong, T. Funazukuri, S. Kagei, Binary diffusion coefficients and retention factors for polar compounds in supercritical carbon dioxide by chromatographic impulse response method, Journal of Supercritical Fluids 37 (2006) 359–366.
- [71] N. Dahmen, A. Kordikowski, G.M. Schneider, Determination of binary diffusion coefficients of organic compounds in supercritical carbon dioxide by supercritical fluid chromatography, Journal of Chromatography 505 (1990) 169–178.
- [72] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Binary diffusion coefficients for 2, 3-dimethylaniline, 2,6-dimethylaniline, 2-methylanisole, 4-methylanisole and 3-nitrotoluene in supercritical carbon dioxide, Journal of Supercritical Fluids 48 (2009) 1–8.
- [73] H. Higashi, Y. Iwai, Y. Nakamura, S. Yamamoto, Y. Arai, Correlation of diffusion coefficients for naphthalene and dimethylnaphthalene isomers in supercritical carbon dioxide, Fluid Phase Equilibria 166 (1999) 101–110.
- [74] L.M. González, J.L. Bueno, I. Medina, Determination of binary diffusion coefficients of anisole, 2,4-dimethylphenol, and nitrobenzene in supercritical carbon dioxide, Industrial & Engineering Chemistry Research 40 (2001) 3711–3716.
- [75] H. Higashi, Y. Iwai, Y. Takahashi, H. Uchida, Y. Arai, Diffusion coefficients of naphthalene and dimethylnaphthalene in supercritical carbon dioxide, Fluid Phase Equilibria 144 (1998) 269–278.
- [76] T. Funazukuri, C.Y. Kong, S. Kagei, Infinite-dilution binary diffusion coefficients of 2-propanone, 2-butanone, 2-pentanone, and 3-pentanone in CO₂ by the Taylor dispersion technique from 308.15 to 328.15 K in the pressure range from 8 to 35 MPa, International Journal of Thermophysics 21 (2000) 1279–1290.
- [77] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, Binary diffusion coefficients of 2-ethyltoluene, 3-ethyltoluene, and 4-ethyltoluene in supercritical carbon dioxide, Journal of Chemical and Engineering Data 54 (2009) 1467–1471.
- [78] O. Suárez-Iglesias, I. Medina, C. Pizarro, J.L. Bueno, Diffusion of benzyl acetate, 2-phenylethyl acetate, 3-phenylpropyl acetate, and dibenzyl ether in mixtures of carbon dioxide and ethanol, Industrial & Engineering Chemistry Research 46 (2007) 3810–3819.
- [79] T. Funazukuri, C.Y. Kong, S. Kagei, Binary diffusion coefficients of acetone in carbon dioxide at 308.2 and 313.2 K in the pressure range from 7.9 to 40 MPa, International Journal of Thermophysics 21 (2000) 651–669.
- [80] C.Y. Kong, T. Funazukuri, S. Kagei, Chromatographic impulse response technique with curve fitting to measure binary diffusion coefficients and retention factors using polymer-coated capillary columns, Journal of Chromatography A 1035 (2004) 177–193.
- [81] V.M. Shenai, B.L. Hamilton, M.A. Matthews, Diffusion in liquid and supercritical fluid mixtures, ACS Symposium Series 514 (1993) 92–103.
- [82] T. Funazukuri, C.Y. Kong, S. Kagei, Binary diffusion coefficients, partition ratios and partial molar volumes at infinite dilution for β -carotene and α tocopherol in supercritical carbon dioxide, Journal of Supercritical Fluids 27 (2003) 85–96.
- [83] C.M. Silva, C.A. Filho, M.B. Quadri, E.A. Macedo, Binary diffusion coefficients of α-pinene and β-pinene in supercritical carbon dioxide, Journal of Supercritical Fluids 32 (2004) 167–175.
- [84] T. Funazukuri, C.Y. Kong, T. Kikuchi, S. Kagei, Measurements of binary diffusion coefficient and partition ratio at infinite dilution for linoleic acid and arachidonic acid in supercritical carbon dioxide, Journal of Chemical and Engineering Data 48 (2003) 684–688.
- [85] Y.S. Han, Y.W. Yang, P.D. Wu, Binary diffusion coefficients of arachidonic acid ethyl ester, cis-5,8,11,14,17-eicosapentaenoic acid ethyl ester, and cis-4,7,10,13,16,19-docosahexanenoic acid ethyl esthers in supercritical carbon dioxide, Journal of Chemical and Engineering Data 52 (2007) 555–559.
- [86] T. Funazukuri, C.Y. Kong, N. Murooka, S. Kagei, Measurements of binary diffusion coefficients and partition ratios for acetone, phenol, α-tocopherol, and β-carotene in supercritical carbon dioxide with a poly(ethylene glycol)coated capillary column, Industrial & Engineering Chemistry Research 39 (2000) 4462–4469.
- [87] T. Funazukuri, C.Y. Kong, S. Kagei, Measurements of binary diffusion coefficients for some low volatile compounds in supercritical carbon dioxide by input–output response technique with two diffusion columns connected in series, Fluid Phase Equilibria 194 (2002) 1169–1178.

- [88] K.K. Liong, P.A. Wells, N.R. Foster, Diffusion coefficients of long-chain esters in supercritical carbon dioxide, Industrial & Engineering Chemistry Research 30 (1991) 1329–1335.
- [89] C.A. Filho, C.M. Silva, M.B. Quadri, E.A. Macedo, Infinite dilution diffusion coefficients of linalool and benzene in supercritical carbon dioxide, Journal of Chemical and Engineering Data 47 (2002) 1351–1354.
- [90] J.J. Suárez, J.L. Bueno, I. Medina, Determination of binary diffusion coefficients of benzene and derivatives in supercritical carbon dioxide, Chemical Engineering Science 48 (1993) 2419–2427.
- [91] J.L. Bueno, J.J. Suárez, J. Dizy, I. Medina, Infinite dilution diffusion coefficients: benzene derivatives as solutes in supercritical carbon dioxide, Journal of Chemical and Engineering Data 38 (1993) 344–349.
- [92] T. Funazukuri, N. Nishimoto, Tracer diffusion coefficients of benzene in dense CO₂ at 313.2 K and 8.5–30 MPa, Fluid Phase Equilibria 125 (1996) 235–243.
- [93] T. Funazukuri, C.Y. Kong, S. Kagei, Infinite dilution binary diffusion coefficients of benzene in carbon dioxide by the Taylor dispersion technique at temperatures from 308.15 to 328.15 K and pressures from 6 to 30 MPa, International Journal of Thermophysics 22 (2001) 1643–1660.
- [94] J.M.H.L. Sengers, U.K. Deiters, U. Klask, P. Swidersky, G.M. Schneider, Application of the Taylor dispersion method in supercritical fluids, International Journal of Thermophysics 14 (1993) 893–922.
- [95] O.J. Catchpole, M.B. King, Measurement and correlation of binary diffusion coefficients in near critical fluids, Industrial & Engineering Chemistry Research 33 (1994) 1828–1837;

O.J. Catchpole, M.B. King, Corrected in Industrial & Engineering Chemistry Research 36 (1997) 4013.

- [96] H. Fu, L.A.F. Coelho, M.A. Matthews, Diffusion coefficients of model contaminants in dense CO₂, Journal of Supercritical Fluids 18 (2000) 141–155.
- [97] O. Suárez-Iglesias, I. Medina, C. Pizarro, J.L. Bueno, Limiting diffusion coefficients of ethyl benzoate, benzylacetone, and eugenol in carbon dioxide at supercritical conditions, Journal of Chemical and Engineering Data 53 (2008) 779–784.
- [98] L.M. González, O. Suárez-Iglesias, J.L. Bueno, C. Pizarro, I. Medina, Application of the corresponding states principle to the diffusion in CO₂, AIChE Journal 53 (2007) 3054–3061.
- [99] K.K. Liong, P.A. Wells, N.R. Foster, Diffusion of fatty acid esters in supercritical carbon dioxide, Industrial & Engineering Chemistry Research 31 (1992) 390–399.
- [100] P.A. Wells, Diffusion in supercritical fluids, Ph.D. thesis, The University of New South Wales, Kensington, 1991.
- [101] C.A. Filho, C.M. Silva, M.B. Quadri, E.A. Macedo, Tracer diffusion coefficients of citral and p-limonene in supercritical carbon dioxide, Fluid Phase Equilibria 204 (2003) 65–73.
- [102] C.Y. Kong, Y.Y. Gu, M. Nakamura, T. Funazukuri, S. Kagei, Diffusion coefficients of metal acetylacetonates in supercritical carbon dioxide, Fluid Phase Equilibria 297 (2010) 162–167.
- [103] N. Dahmen, A. Duberg, G.M. Schneider, Determination of binary diffusion coefficients in supercritical carbon dioxide with supercritical fluid chromatography (SFC), Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 94 (1990) 384–386.
- [104] C.M. Silva, E.A. Macedo, Diffusion coefficients of ethers in supercritical carbon dioxide, Industrial & Engineering Chemistry Research 37 (1998) 1490–1498.
- [105] T. Funazukuri, C.Y. Kong, S. Kagei, Effects of molecular weight and degree of unsaturation on binary diffusion coefficients for lipids in supercritical carbon dioxide, Fluid Phase Equilibria 219 (2004) 67–73.
- [106] T. Funazukuri, C.Y. Kong, S. Kagei, Binary diffusion coefficient, partition ratio, and partial molar volume for docosahexaenoic acid, eicosapentaenoic acid and α -linolenic acid at infinite dilution in supercritical carbon dioxide, Fluid Phase Equilibria 206 (2003) 163–178.
- [107] C.Y. Kong, N.R.W. Withanage, T. Funazukuri, S. Kagei, Binary diffusion coefficients and retention factors for γ-linolenic acid and its methyl and ethyl esters in supercritical carbon dioxide, Journal of Supercritical Fluids 37 (2006) 63–71.
- [108] T. Funazukuri, S. Hachisu, N. Wakao, Measurements of binary diffusion coefficients of C₁₆-C₂₄ unsaturated fatty acid methyl esters in supercritical carbon dioxide, Industrial & Engineering Chemistry Research 30(1991) 1323– 1329.
- [109] A. Akgerman, C. Erkey, M. Orejuela, Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide, Industrial & Engineering Chemistry Research 35 (1996) 911–917.
- [110] X. Dong, B. Su, H. Xing, Y. Yang, Q. Ren, Diffusion coefficients of L-menthone and L-carvone in mixtures of carbon dioxide and ethanol, Journal of Supercritical Fluids, in press (Corrected Proof).
- [111] T. Funazukuri, Y. Ishiwata, Diffusion coefficients of linoleic acid methyl ester, vitamin K₃ and indole in mixtures of carbon dioxide and *n*-hexane at 313.2 K, and 16.0 MPa and 25.0 MPa, Fluid Phase Equilibria 164 (1999) 117–129.
- [112] C.Y. Kong, M. Mori, T. Funazukuri, S. Kagei, Measurements of binary diffusion coefficients, retention factors and partial molar volumes for myristoleic acid and its methyl ester in supercritical carbon dioxide, Analytical Sciences 22 (2006) 1431–1436.
- [113] H.H. Lauer, D. Mcmanigill, R.D. Board, Mobile-phase transport properties of liquefied gases in near-critical and supercritical fluid chromatography, Analytical Chemistry 55 (1983) 1370–1375.
- [114] D.M. Lamb, S.T. Adamy, K.W. Woo, J. Jonas, Transport and relaxation of naphthalene in supercritical fluids, Journal of Physical Chemistry 93 (1989) 5002–5005.

- [115] S. Umezawa, A. Nagashima, Measurement of the diffusion coefficients of acetone, benzene, and alkane in supercritical CO₂ by the Taylor dispersion method, Journal of Supercritical Fluids 5 (1992) 242–250.
- [116] P.G. Debenedetti, R.C. Reid, Diffusion and mass transfer in supercritical fluids, AIChE Journal 32 (1986) 2034–2046.
- [117] T. Wells, N.R. Foster, R.P. Chaplin, Diffusion of phenylacetic acid and vanillin in supercritical carbon dioxide, Industrial & Engineering Chemistry Research 31 (1992) 927–934.
- [118] C.Y. Kong, N.R.W. Withanage, T. Funazukuri, S. Kagei, Binary diffusion coefficients and retention factors for long-chain triglycerides in supercritical carbon dioxide by the chromatographic impulse response method, Journal of Chemical and Engineering Data 50 (2005) 1635–1640; C.Y. Kong, N.R.W. Withanage, T. Funazukuri, S. Kagei, Corrected in Journal of

Chemical and Engineering Data 50 (2005) 2112.

- [119] T. Funazukuri, C.Y. Kong, S. Kagei, Infinite-dilution binary diffusion coefficient, partition ratio, and partial molar volume for ubiquinone CoQ10 in supercritical carbon dioxide, Industrial & Engineering Chemistry Research 41 (2002) 2812–2818.
- [120] A. Kopner, A. Hamm, J. Ellert, R. Feist, G.M. Schneider, Determination of binary diffusion coefficients in supercritical chlorotrifluoromethane and sulfurhexafluoride with supercritical fluid chromatography (SFC), Chemical Engineering Science 42 (1987) 2213–2218.
- [121] J.M. Noel, C. Erkey, D.B. Bukur, A. Akgerman, Infinite dilution mutual diffusion coefficients of 1-octene and 1-tetradecene in near-critical ethane and propane, Journal of Chemical and Engineering Data 39 (1994) 920–921.
- [122] Y.Q. Fan, R.Y. Qian, M.R. Shi, J. Shi, Infinite dilution diffusion coefficients of several aromatic hydrocarbons in octane and 2,2,4-trimethylpentane, Journal of Chemical and Engineering Data 40 (1995) 1053–1055.
- [123] M. Toriumi, R. Katooka, K. Yui, T. Funazukuri, C. Yi Kong, S. Kagei, Measurements of binary diffusion coefficients for metal complexes in organic solvents by the Taylor dispersion method, Fluid Phase Equilibria 297 (2010) 62–66.
- [124] T. Funazukuri, Nishimoton, N. Wakao, Binary diffusion coefficients of organic compounds in hexane, dodecane, and cyclohexane at 303.2–333.2 K and 16.0 MPa, Journal of Chemical and Engineering Data 39 (1994) 911–915.
- [125] S.H. Chen, H.T. Davis, D.F. Evans, Tracer diffusion in polyatomic liquids. II, Journal of Chemical Physics 75 (1981) 1422–1426.
- [126] B.H.C. Chen, C.K.J. Sun, S.H. Chen, Hard sphere treatment of binary diffusion in liquid at high dilution up to the critical temperature, Journal of Chemical Physics 82 (1985) 2052–2055.
- [127] H.C. Chen, S.H. Chen, Tracer diffusion of crown ethers in n-decane and n-tetradecane: An improved correlation for binary systems involving normal alkanes, Industrial & Engineering Chemistry Fundamentals 24 (1985) 187–192.
- [128] S.H. Chen, H.T. Davis, D.F. Evans, Tracer diffusion in polyatomic liquids. III, Journal of Chemical Physics 77 (1982) 2540–2544.
- [129] M.A. Matthews, J.B. Rodden, A. Akgerman, High-temperature diffusion of hydrogen, carbon monoxide, and carbon dioxide in liquid *n*-heptane, *n*dodecane, and *n*-hexadecane, Journal of Chemical and Engineering Data 32 (1987) 319–322.
- [130] M.A. Matthews, A. Akgerman, Diffusion coefficients for binary alkane mixtures to 573 K and 3.5 MPa, AIChE Journal 33 (1987) 881–885.
- [131] J.B. Rodden, C. Erkey, A. Akgerman, High-temperature diffusion, viscosity, and density measurements in *n*-eicosane, Journal of Chemical and Engineering Data 33 (1988) 344–347.
- [132] M.A. Matthews, J.B. Rodden, A. Akgerman, High-temperature diffusion, viscosity, and density measurements in *n*-hexadecane, Journal of Chemical and Engineering Data 32 (1987) 317–319.
- [133] C.K.J. Sun, S.H. Chen, Tracer diffusion of aromatic hydrocarbons in *n*-hexane up to the supercritical region, Chemical Engineering Science 40 (1985) 2217–2224.

- [134] J.H. Dymond, L.A. Woolf, Tracer diffusion of organic solutes in *n*-hexane at pressures up to 400 MPa, Journal of the Chemical Society-Faraday Transactions I 78 (1982) 991–1000.
- [135] W.A. Wakeham, D.H. Slater, Binary diffusion coefficients of homologous species in argon, Journal of Physics B-Atomic Molecular and Optical Physics 7 (1974) 297–306.
- [136] P.E. Suetin, A.E. Loiko, B.A. Kalinin, Y.F. Gerasimov, Measuring the mutual gas diffusion coefficient at low temperatures, Journal of Engineering Physics and Thermophysics 19 (1970) 1451–1453.
- [137] G.A. DuBro, S. Weissman, Measurements of gaseous diffusion coefficients, Physics of Fluids 13 (1970) 2682–2688.
- [138] A.P. Malinauskas, M.D. Silverman, Gaseous diffusion in neon-noble-gas systems, Journal of Chemical Physics 50 (1969) 3263-3270.
- [139] S. Takahashi, M. Hongo, Diffusion coefficients of gases at high pressures in the CO₂-C₂H₄ system, Journal of Chemical Engineering of Japan 15 (1982) 57–59.
- [140] D. Gavril, K.R. Atta, G. Karaiskakis, Determination of collision cross-sectional parameters from experimentally measured gas diffusion coefficients, Fluid Phase Equilibria 218 (2004) 177–188.
- [141] W.A. Wakeham, D.H. Slater, Diffusion coefficients for n-alkanes in binary gaseous mixtures with nitrogen, Journal of Physics B-Atomic Molecular and Optical Physics 6 (1973) 886–896.
- [142] S. Weissman, Mutual diffusion coefficients for He-H₂ system, Journal of Chemical Physics 55 (1971) 5839–5840.
- [143] D. Cain, W.L. Taylor, Diffusion coefficients of krypton-noble gas systems, Journal of Chemical Physics 71 (1979) 3601–3607.
- [144] S. Weissman, G.A. Dubro, Diffusion coefficients for CO₂-CH₄, Journal of Chemical Physics 54 (1971) 1881–1883.
- [145] T. Tominaga, T. Park, T.R. Rettich, R. Battino, E. Wilhelm, Binary gaseous diffusion coefficients. 7. Tetrachloroethene and 1,1,1-trichloroethane with methane and tetrafluoromethane at 100 kPa and 283–343 K, Journal of Chemical and Engineering Data 33 (1988) 479–481.
- [146] S.L. Seager, L.R. Geertson, J.C. Giddings, Temperature dependence of gas and vapor diffusion coefficients, Journal of Chemical & Engineering Data 8 (1963) 168–169.
- [147] N. Matsunaga, M. Hori, A. Nagashima, Measurement of mutual diffusion coefficients of gases by the Taylor method: measurements on H₂-Air, H₂-N₂, and H₂-O₂ systems, Heat Transfer-Asian Research 31 (2002) 182–193.
- [148] R. Battino, E. Wilhelm, Binary gaseous diffusion coefficients, III: sulfur hexafluoride with cyclohexane, methylcyclohexane and toluene at 1 atm pressure and 10–70 °C, Monatshefte Fur Chemie 106 (1975) 347–353.
- [149] C.L. Yaws, Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals, McGraw-Hill Professional, New York, 1998.
- [150] Molecular Design LAB. (Dept. of Chemical Engineering), Korea Thermophysical Properties Data Bank (KDB) 1995 (available from: http://www.cheric.org/research/kdb/hcprop/cmpsrch.php).
- [151] AspenTech., Aspen Physical Property System—Physical Property Methods,2006.5, Aspen Technology, Inc., 2007.
- [152] H. Liu, E. Ruckenstein, A predictive equation for the tracer diffusion of various solutes in gases, supercritical fluids, and liquids, Industrial & Engineering Chemistry Research 36 (1997) 5488–5500.
- [153] I. ChemZoo, ChemSpider–Building community for chemists, 2007, Available from: http://www.chemspider.com.
- [154] R.D. Lide, CRC Handbook of Chemistry and Physics, 9th ed., McGraw-Hill Handbooks, Boca Raton, Florida, 2009.
- [155] R.H. Perry, D.W. Green, Perry's Chemical Engineers' Handbook, 8th ed., McGraw-Hill Professional, New York, 2008.
- [156] L. Hangzhou, Weeqoo Technology Co., LookChem.com–Look for Chemicals, 2008, Available from: http://www.lookchem.com.